SAFETY
Statements in this manual preceded by the following safety signal words are of special significance. Definitions of the SAFETY signal words follow.

<table>
<thead>
<tr>
<th>SAFETY SIGNAL WORD</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER</td>
<td>Means a hazard that will cause death or serious injury if the warning is ignored.</td>
</tr>
<tr>
<td>WARNING</td>
<td>Means a hazard that could cause death or serious injury if the warning is ignored.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>Means a hazard that may cause minor or moderate injury if the warning is ignored. It also may mean a hazard that will only cause damage to property.</td>
</tr>
<tr>
<td>NOTE</td>
<td>Indicates points of particular interest for more efficient and convenient operation.</td>
</tr>
</tbody>
</table>

INTRODUCTION
This manual provides the information needed to service the Western Enterprises HQ2, HQ2HL, and HQ2HP series manifolds. This information is intended for use by technicians or personnel qualified to repair and service manifold equipment.

The information contained in this document, including performance specifications, is subjected to change without notice.

WARRANTY
Western Enterprises makes no warranty of any kind with regard to the material in this manual, including but not limited to the implied warranties of merchantability and fitness for a particular purpose.

Refer to the Installation and Operating Instructions manual for warranty information.
CAUTION

- Failure to follow the following instructions can result in personal injury or property damage:

- Never permit oil, grease, or other combustible materials to come in contact with cylinders, manifold, and connections. Oil and grease may react and ignite while in contact with some gases — particularly oxygen and nitrous oxide.

- Cylinder, header, and master valves should always be opened very s-l-o-w-l-y. Heat of recompression may ignite combustible materials.

- Pigtails should never be kinked, twisted, or bent into a radius smaller than 5 inches. Mistreatment may cause the pigtails to burst.

- Do not apply heat. Some materials may react and ignite while in contact with some gases — particularly oxygen and nitrous oxide.

- Cylinders should always be secured with racks, chains, or straps. Unrestrained cylinders may fall over and damage or break off the cylinder valve which may propel the cylinder with great force.

- Oxygen manifolds and cylinders should be grounded. Static discharges and lighting may ignite materials in an oxygen atmosphere, creating a fire or explosive force.

- Welding should not be performed near nitrous oxide piping. Excessive heat may cause the gas to dissociate, creating an explosive force.

ABBREVIATIONS

C _____ Common
CGA____Compressed Gas Association
FT-LBS ___ Foot-Pounds
IN-LBS ___ Inch-Pounds
N/C _____ Normally Closed
N/O ____ Normally Open
NPT ____ National Pipe Taper
OSHA ___ Occupational Safety & Health Association
PSIG ___ Pounds per Square Inch Gauge
SCFH ___ Standard Cubic Feet per Hour
VAC ___ Voltage, Alternating Current
VDC ___ Voltage, Direct Current
PCB ___ Printed Circuit Board

Western Enterprises shall not be liable for errors contained herein or incidental or consequential damages in connection with providing this manual or the use of material in this manual.
# TABLE OF CONTENTS

## SECTION 1
### INTRODUCTION
- Product Description .......................................................... 1-1
- Installation Information ...................................................... 1-1
- Manifold Specifications .................................................. 1-2
- Adjustment Specifications ............................................... 1-4
- Recommended Tools and Test Equipment ......................... 1-4

## SECTION 2
### THEORY OF OPERATION
- General Information ....................................................... 2-1
- Gas Flow Through the Manifold .................................... 2-1
- Manifold Operation ....................................................... 2-4
- High Pressure Switches ................................................ 2-4
- Primary Regulators ........................................................ 2-5
- Low Pressure Switches .................................................. 2-6
- Solenoid Valves ............................................................. 2-6
- Check Valves ................................................................. 2-7
- Line Pressure Regulator .................................................. 2-7
- Three Way Ball Valve .................................................... 2-8

## SECTION 3
### FIELD TESTING AND TROUBLE-SHOOTING
- Performance Verification Procedure .............................. 3-1
- Trouble-shooting .............................................................. 3-4

## SECTION 4
### SERVICE PROCEDURES
- General Maintenance ...................................................... 4-1
- Safety Precautions ........................................................ 4-1
- Cleaning, Lubrication, and Sealing ................................. 4-2
- General Repair Procedures ............................................ 4-3
- How to Shutdown the Manifold ..................................... 4-3
- High Pressure Switch Replacement ............................... 4-4
- Low Pressure Switch Replacement ................................. 4-5
- Manifold Controller Printed Circuit Board Replacement .... 4-6
- Gauge Replacement ........................................................ 4-7
- Solenoid Valve Replacement ......................................... 4-8
- Intermediate Pressure Check Valve Repair .................... 4-9
- Primary Regulator Repair .............................................. 4-10
- Line Regulator Repair .................................................... 4-15
SECTION 5
MAINTENANCE AND REPAIR PARTS

Replacement Pigtails ........................................................................................................... 5-1
Indicator Lamp and Replacement Parts .................................................................................. 5-1
Panel Mount Gauges ............................................................................................................. 5-1
Regulators and Repair Kits ................................................................................................. 5-1
Valves and Valve Repair Kits .............................................................................................. 5-2
Pressure Switches ............................................................................................................... 5-2
Power Supply Replacement Parts ....................................................................................... 5-2
Remote Alarms .................................................................................................................... 5-2

SECTION 5
MAINTENANCE AND REPAIR PARTS (Repair Drawings)

Miscellaneous Hardware - HQ2 & HQ2HP Series ................................................................ 5-3
Miscellaneous Hardware - HQ2HL Series ............................................................................ 5-4
Manifold Components - HQ2 & HQ2HP Series .................................................................. 5-5
Manifold Components - HQ2HL Series ............................................................................... 5-6
Mounting Block Components - HQ2 & HQ2HP Series ......................................................... 5-7
Mounting Block Components - HQ2HL Series .................................................................... 5-8
Primary Regulator Components - HQ2, HQ2HP, and HQ2HL Series .................................. 5-9
Primary Regulator Components - HQ2-9 (oxygen) ............................................................. 5-10
Right Line Regulator Assembly ......................................................................................... 5-11
Left Line Regulator Assembly ............................................................................................ 5-12
Check Valve Components .................................................................................................. 5-13
Gauge Plate Components .................................................................................................... 5-14
Power Supply Components ............................................................................................... 5-15
INTRODUCTION & GENERAL INFORMATION

PRODUCT DESCRIPTION

The automatic changeover manifold is designed to provide a reliable uninterrupted supply of gas to a hospital or clinic’s medical gas pipeline system.

The manifold has an equal number of cylinders in its "Service" supply and "Reserve" supply banks, automatically switching to the "Reserve" supply when the "Service" supply becomes depleted. When the manifold changes to "Reserve" supply, it sends a signal to the hospital or clinic’s medical gas alarm system alerting the personnel of the need for the exhausted bank of cylinders to be replaced with full cylinders. After new cylinders are in place and turned on, they are automatically placed in "Reserve". No manual resetting of the manifold is necessary.

INSTALLATION INFORMATION

Manifolds should be installed in accordance with guidelines stated by the National Fire Protection Association, the Compressed Gas Association, OSHA, and all applicable local codes. The carbon dioxide and nitrous oxide manifolds should not be placed in a location where the temperature will exceed 120°F (49°C) or fall below 20°F (-7°C). The manifolds for all the other gases should not be placed in a location where the temperature will exceed 120°F (49°C) or fall below 0°F (-18°C). A manifold placed in an open location should be protected against weather conditions. During winter, protect the manifold from ice and snow. In summer, shade the manifold and cylinders from continuous exposure to direct rays of the sun.

Leave all protective covers in place until their removal is required for installation. This precaution will keep moisture and debris from the piping interior, avoiding operational problems.

![Diagram of the automatic changeover manifold with dimensions](image)

**Note:** All dimensions are approximate.

<table>
<thead>
<tr>
<th>Total number of cylinders</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall manifold length</td>
<td>5'-8&quot;</td>
<td>7'-4&quot;</td>
<td>9'-0&quot;</td>
<td>10'-8&quot;</td>
<td>12'-4&quot;</td>
</tr>
</tbody>
</table>

**FIGURE 1-1 Installation Dimensions**
MANIFOLD SPECIFICATIONS

Flow Capability


Nitrogen: 3000 SCFH maximum at 160 psig delivery and 2000 psig inlet pressure.

Nitrous Oxide: The flow capability of a Nitrous Oxide cylinder manifold will depend upon conditions at the installation site, demands of the delivery system and the number of cylinders in supply service. Maximum capability is 500 SCFH at 50 psig delivery and 750 psig inlet pressure. Installing a Nitrous Oxide manifold in a location which exposes it to ambient temperatures below 20°F (-7°C) is not recommended. Higher flows are obtainable by adding additional cylinders or heaters, please call Western for Technical Information.

Breathing Air: 2000 SCFH maximum at 50 psig delivery and 2000 psig inlet pressure.

Helium: 2000 SCFH maximum at 50 psig delivery and 2000 psig inlet pressure.

Carbon Dioxide: The flow capability of a Carbon Dioxide cylinder manifold will depend upon conditions at the installation site, demands of the delivery system and the number of cylinders in supply service. Maximum capability is 500 SCFH at 50 psig delivery and 750 psig inlet pressure. Installing a Carbon Dioxide manifold in a location which exposes it to ambient temperatures below 20°F (-7°C) is not recommended. Higher flows are obtainable by adding additional cylinders or heaters, please call Western for Technical Information.

Power Source Requirements

A 115 VAC to 24 VAC power supply is provided with the manifold to operate the solenoid valves and alarm lights on the manifold. Under normal operation the manifold will draw a maximum of 1.5 amperes.

A five terminal remote alarm terminal strip is on the right side of the circuit board in the power supply box for remote alarm interfacing. The top three terminals on this strip (N/C, N/O, and C) provide dry contacts for hookup to the hospital or clinic’s medical gas alarm system. Contacts are rated up to 3 amps 30 VDC or 2 amps 250 VAC.

Nitrous Oxide and Carbon Dioxide systems include a 500 SCFH capacity heater. The thermostatically controlled heater warms the gas before entering the regulator, preventing "freeze-up". An amber light on the control indicates when the heater circuit is on. The heater operates at 115 VAC and draws approximately four amperes.

Piping Connections

Header Inlets:
- Carbon Dioxide: CGA 320
- Nitrous Oxide: CGA 326
- Breathing Air: CGA 346
- Oxygen: CGA 540
- Helium: CGA 580
- Nitrogen: CGA 580
- Medical Breathing Mixtures: CGA 280

Manifold Outlet: 1/2 NPT male pipe thread (located at the middle on top of the cabinet)

Relief Valve: 1/2 NPT male pipe thread (located on the right side on top of the cabinet)

FIGURE 1-2 Connection Locations
<table>
<thead>
<tr>
<th>Gas</th>
<th>High Pressure Switch</th>
<th>Primary Regulator</th>
<th>Primary Regulator Relief Valve</th>
<th>Low Pressure Switch</th>
<th>Line Regulator</th>
<th>Line Regulator Relief Valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>HQ2</td>
<td>475-525</td>
<td>195-205*</td>
<td>300-360</td>
<td>125-130</td>
<td>50-55</td>
<td>75</td>
</tr>
<tr>
<td>HQ2HP</td>
<td>475-525</td>
<td>295-305*</td>
<td>400-500</td>
<td>230-235</td>
<td>170-175</td>
<td>250</td>
</tr>
<tr>
<td>HQ2HL</td>
<td>275-325</td>
<td>225-235</td>
<td>300-360</td>
<td>125-130</td>
<td>50-55</td>
<td>75</td>
</tr>
</tbody>
</table>

Unit of measure: all units are in psig

* Some outlet pressures will vary depending on the inlet pressure to the manifold. All testing must done with full cylinders.
ADJUSTMENT SPECIFICATIONS

RECOMMENDED TOOLS AND TEST EQUIPMENT

Volt/Ohm meter
Isopropyl alcohol
Phillips screwdriver
Flat blade screwdriver
Needle nose pliers
5/32" hex key wrench
13/16" hex socket wrench
Set of combination wrenches
1/4" thru 1", 1 1/8", 1 3/8", 1 1/2", and 1 3/4"

Fluorolube® S-30 lubricant
Liquid leak detector
Teflon® tape

Available from local source

Manufactured by Occidental Chemical Corporation
Niagara Falls, New York
Available from Western Enterprises
Part number LT-100
Available from Western Enterprises
Part number MTT-1 or MTT-2

Fluorolube is a registered trademark of Occidental Chemical Corporation.
Teflon is a registered trademark of E. I. du Pont de Nemours & Co. (Inc.).
THEORY OF OPERATION

GENERAL INFORMATION
This section concentrates on the basic theory of operation of the components of the automatic changeover manifold.

The first part of this section is an operating summary and traces the flow of gas through the various components of the manifold. The second part of this section explains in detail the operation of the individual components contained in the manifold control section.

GAS FLOW THROUGH THE MANIFOLD
The automatic changeover manifold consists of a manifold control unit and two supply bank headers. The two supply banks alternate between "service" and "reserve" to provide an uninterrupted supply of gas. The manifold control includes the following components and features:

- Green "in service" indicator light for each cylinder bank
- Yellow "ready for use" indicator light for each cylinder bank
- Red "replace depleted cylinders" indicator light for each cylinder bank
- Cylinder bank pressure gauges
- Line pressure gauge
- Safety relief valves
- Automatic bank switching.

Each of the supply banks consist of a header, 24" stainless steel flexible pigtails with integral check valves, individual header valves*, master shut-off valves, and union connections for attachment to the control unit. The main components of the manifold are shown in Figures 2-1 and 2-2. Figure 2-3 shows the piping schematic and the various gas pressure areas. Figure 2-4 is the schematic diagram of the electrical system of the manifold.

* NOTE: Manifolds without header valves are constructed utilizing a check valve outlet bushing.

The cylinder bank that supplies the piping system is known as the "Service" supply while the cylinder bank on stand-by is referred to as the "Reserve" supply. Gas flows from the cylinder through the pigtails, check valves, headers, and shut-off valves into the left and right inlets of the control section.

A pressure switch port is located on the inlet block for sensing cylinder pressure for verification of adequate cylinder pressure for stand-by mode. Gas flows through the inlet to the primary regulators on all manifolds except those for Nitrous Oxide and Carbon Dioxide service (Nitrous Oxide and Carbon Dioxide systems include a 500 SCFH capacity heater. The thermostatically controlled heater warms the gas before entering the regulator, preventing "freeze-up" and loss of pressure due to the extreme low temperatures generated when these gases rapidly expand. An amber light on the control indicates when the heater circuit is on). Tubing is connected from the primary regulator high pressure port to the cylinder pressure gauges to sense the supply pressure of the gas in the cylinders.

FIGURE 2-1 External Components
Pressure is reduced in the primary regulators to the pressures noted in the adjustment specification chart located on page 1-3. Both primary regulators are factory preset to deliver the same pressure. The primary regulators have three outlet ports. The first low pressure port is connected (via tubing) to a low pressure switch. A relief valve is connected to the second port. The third port is the gas outlet port, which is connected via tubing to the appropriate solenoid valve.

The gas flows from the primary regulators to the solenoid valves. The solenoid valves are either open or closed depending on which side is in service and whether the "Reserve" cylinders have adequate pressure. The solenoid valve on the side that is in service will be open. The solenoid valve on the "Reserve" side will be closed if the cylinder pressure on that side is above the high pressure switch setting listed in Chart 1 (page 1-3). The "Service" side is determined by whichever side of the manifold is initially pressurized.

Gas on the "Reserve" side is stopped at this point by the closed solenoid valve. The gas from the "Service" side continues to flow, entering a check valve after leaving the solenoid valve. The check valve prevents the gas from flowing backwards towards the solenoid valve when the reserve side is in use.

The gas flows from the check valve into a three way bypass valve. This three way valve toggles the gas between the supply circuit and a bypass circuit. The supply circuit and the bypass circuit are identical. The bypass circuit allows the supply line regulator to be removed without interrupting the gas supply.

The gas flows from the three way valve to the inlet of the line regulator. The line pressure regulator further reduces the pressure to the final pressure delivered to the medical gas piping system. The regulator has one inlet port and three outlet ports. Two of the three outlet ports are not used and are plugged. Gas flows through the third outlet port into a check valve. This check valve keeps gas from back flowing into the line regulator when the bypass circuit is being used.

The gas flows from the check valve into the outlet block assembly. A bleed valve is connected to one outlet port which is only used during field service to set the regulators and switches. Tubing is connected from the second outlet port to the line pressure gauge to sense the pressure of the gas on the downstream side of the line regulator. A line pressure relief valve is also located on the outlet block. This relief valve is connected (via tubing) to the primary regulator relief valves. The tubing is routed from these relief valves to the outside of the control unit for piping to the outside of the building for manifolds located indoors.

The gas flows from the outlet block to the pipeline distribution system.
MANIFOLD OPERATION

When both cylinder banks are full, the switches all close causing the solenoid valve on the "Reserve" side to close and activating the system status lights. The "service" side is determined by whichever side of the manifold is pressurized first. The "Service" supply is indicated by the green "in service" light. The "Reserve" supply is indicated by the yellow "ready for use" light.

Changeover from the "Service" to "Reserve" side is accomplished when the "Service" side pressure falls below the set point of the low pressure switch. When this pressure drops to the set point, the low pressure switch is actuated causing the solenoid valve on the "Reserve" side to open. The red "replace depleted cylinders" light on the "Service" side comes on. The "Reserve" bank automatically begins to flow without any interruption in service line delivery pressure.

There are two indicators as to which bank should be changed; the red "replace depleted cylinders" light and the cylinder bank pressure gauge.

After replacing empty cylinders and opening the master and cylinder valves, the cylinder pressure will actuate the high pressure switch, the red "replace depleted cylinders" light will be extinguished and the yellow "ready for use" light will come on. There are no levers or knobs to reposition after replacement of an empty bank.

HIGH PRESSURE SWITCHES

The high pressure switches used in the manifold are diaphragm piston type with one pressure port for sensing gas pressure as shown in Figure 2-5. The switches have three electrical contacts: common, normally closed, and normally open (See Figure 2-6). For proper manifold operation, signal wires are be connected to the common and normally closed terminals.

When the manifold is pressurized to the normal pressures, the piston in the switch is pushed up. The piston pushes the activator of the switch up. This action closes the normally open contact and opens the normally closed contact.

As the gas from the cylinder banks is depleted, the piston moves down, releasing the force against the switch activator. The contacts of the switch then return to the normally open and normally closed positions.

---

**FIGURE 2-5** High Pressure Switch

**FIGURE 2-6** Switch Schematic
PRIMARY REGULATORS

The primary regulator’s function is to reduce the cylinder pressure of the supply banks to a more usable pressure.

Gas enters the regulator through the inlet port and fills the high pressure chamber and the port to the cylinder contents gauge with gas. See Figure 2-7. Gas in these areas is at the same pressure as the gas in the cylinders. The gas is sealed in this chamber by the seat holder and stem being pushed against the nozzle seal by gas pressure and the body spring. An o-ring seals between the nozzle and the regulator body.

The next area of the regulator is the low (regulated) pressure area of the regulator. This chamber is sealed from the high pressure area by the seat/nozzle assembly and the o-ring around the nozzle and is isolated from the atmospheric pressure by the diaphragm sub-assembly forming a seal around the body of the regulator. The diaphragm is squeezed between the body of the regulator, a slip ring, washer, and the regulator bonnet as the bonnet is tightened down on the body.

The third chamber of the regulator is open to atmospheric pressure. This chamber contains the regulator bonnet, adjusting screw, pivot, bonnet spring, washer, and the top side of the diaphragm sub-assembly.

As the adjusting screw is turned in against the pivot, the bonnet spring is compressed and puts a downward force on the diaphragm sub-assembly. The bottom of the diaphragm sub-assembly is in direct contact with the seat holder and stem. When the diaphragm is forced down by the spring, the stem is pushed away from the nozzle and gas can then flow from the high pressure chamber to the low pressure chamber.

When the low pressure chamber fills with gas, the gas will push upward against the diaphragm sub-assembly. As the pressure continues to build in the low pressure chamber, more upward force will be exerted against the diaphragm and the diaphragm will push up against the bonnet spring compressing the bonnet spring. As the diaphragm is gradually raised by the gas pressure, the seat and nozzle gradually come closer together filling the low pressure chamber slowly and eventually the upward pressure exerted by the gas will be slightly greater than the downward pressure of the bonnet spring and the seat nozzle will close. As gas is released from the low pressure chamber, a proportional amount of gas will be let into the low pressure area from the high pressure chamber. As the adjusting screw is turned in farther and the bonnet spring compressed, the gas pressure required to lift the diaphragm increases, resulting in a higher delivery pressure from the outlet port of the regulator.

FIGURE 2-7 Primary Regulator
LOW PRESSURE SWITCHES

The low pressure switches used to signal "Reserve in Use" are piston type with one common contact, one normally closed contact, and one normally open contact. See Figures 2-6 and 2-8.

When the manifold is pressurized to the normal pressures, the piston in the switch is pushed up. The piston pushes the activator of the switch up. This action closes the normally open contact and opens the normally closed contacts.

As gas from the cylinder banks is depleted, the piston moves down, releasing the force against the switch activator. The contacts of the switch then return to the normally open and normally closed positions.

The switches complete the electrical circuits to the indicators on the front of the control section and to the remote alarm interface board in the power supply box.

SOLENOID VALVES

The solenoid valves are the heart of the manifold for maintaining the stand-by or reserve bank. The solenoid valves are constructed of two basic functional units: a solenoid (electromagnet) with its core and a valve body containing one or more orifices. See Figure 2-9. Flow through an orifice is stopped or allowed by the action of the core when the solenoid is energized or de-energized. The solenoid is mounted directly on the valve body. The core is enclosed and free to move in a sealed tube providing a compact, packless assembly.

The valve has a pilot and bleed orifice and utilizes the line pressure for operation. When the solenoid is energized, the pilot orifice is closed and full line pressure is applied to the top of the diaphragm through the bleed orifice, thereby providing a seating force for tight closure. When the solenoid is de-energized, the core opens the pilot orifice and relieves pressure from the top of the valve diaphragm to the outlet side of the valve. This results in an unbalanced pressure which causes the line pressure to lift the diaphragm off the main orifice, thereby opening the valve.
CHECK VALVES
The check valves prevent gas from flowing backward from the intermediate pressure area to the solenoid valve and primary regulator. See Figure 2-10.

Gas enters the check valve from the solenoid valve and pushes the check valve seat assembly away from the sealing surface of the valve body. This allows the gas to flow to the outlet port of the valve. When the gas flow stops, the spring of the check valve pushes the valve seat down on the sealing surface preventing any gas flow backward through the valve.

SOLENOID BYPASS
The bypass is to provide gas to the outlet of the solenoid in case the outlet fitting leaks. The bypass will ensure that the maximum pressure differential across the solenoid is not exceeded.

Gas enters the inlet of the bypass check valve from the solenoid inlet. Gas also enters the outlet of the bypass from the outlet of the solenoid. During normal operation the inlet and the outlet pressures are equal. The bypass check valve is set around 130 psig, (it takes 130 psig differential from the inlet to the outlet to open the bypass check valve). The only time this check valve will open is if the solenoid outlet fitting leaks. If the outlet fitting leaks the bypass check valve will open and permit gas to flow. This flow of gas will ensure that the maximum allowable differential pressure of the solenoid is not exceeded.

LINE PRESSURE REGULATORS
The line pressure regulator used in the manifold is a single stage, four port adjustable regulator. The regulator utilizes a tied diaphragm/valve seat design to achieve maximum flow rates. Refer to Figure 2-12. It has one inlet port and three outlet ports. The inlet port is piped to an intermediate pressure port in the manifold block. One outlet port is piped to the outlet of the manifold for connection to the main pipeline. One port is connected to the delivery line pressure gauge and the other outlet port is connected to a bleed valve for use in field adjustment.

Gas enters the regulator through the inlet port and with the adjusting screw backed away from the spring, is sealed in the high pressure chamber of the regulator by the seat and nozzle.
As the adjusting screw is turned in, it compresses the spring and puts a downward force on the diaphragm sub-assembly. The bottom of the diaphragm sub-assembly is connected to the seat holder. When the diaphragm is forced down by the spring, the stem is pushed away from the nozzle and gas can then flow from the high pressure chamber to the low pressure chamber.

When the low pressure chamber fills with gas, the gas will push upward against the diaphragm sub-assembly. As the pressure continues to build in the low pressure chamber, more upward force will be exerted against the diaphragm and the diaphragm will push up against the bonnet spring compressing the bonnet spring. As the diaphragm is gradually raised by the gas pressure, the seat and nozzle gradually come closer together filling the low pressure chamber slowly and eventually the upward pressure exerted by the gas will be slightly greater than the downward pressure of the bonnet spring and the seat nozzle will close. As gas is released from the low pressure chamber, a proportional amount of gas will be let into the low pressure area from the high pressure chamber. As the adjusting screw is turned in farther and the bonnet spring compressed, the gas pressure required to lift the diaphragm increases, resulting in a higher delivery pressure from the outlet port of the regulator.

THREE WAY BALL VALVE
The three way valve determines which line regulator will be in service (see Figure 2-13). Rotating the knob 1/2 turn the changes the direction of gas flow and causes the bypass line regulator to become the service line regulator.

Gas enters the three way valve through the inlet port. The gas then enters the flow directional ball. The directional flow of the gas is determined by the orientation of the valve handle. The direction of gas flow can be changed by rotating the valve handle 1/2 turn.

![FIGURE 2-13 Three Way Ball Valve](image-url)
FIELD TESTING & TROUBLE-SHOOTING

The manifold performance tests are used to verify the manifold functional performance. When used in conjunction with the trouble-shooting charts, the technician can verify proper performance or rapidly identify the probable source of the problem.

PERFORMANCE VERIFICATION PROCEDURE

NOTE: It may be necessary to pipe the bleed valve line outside to vent the system during testing. The bleed valve is equipped with a CGA 022 RH connection, 9/16-18UNF-2A right hand thread, for utilization of a hose connection. The hose can be installed after completing step 1 below.

1. Open the manifold cover by removing the two screws in the right side corners. The cover is hinged on the left side.
2. Open the master valves located on the cylinder headers prior to pressurizing the manifold.
3. Slowly open one cylinder valve on the left bank of cylinders.
4. Slowly open one cylinder valve on the right bank of cylinders.
5. Using a leak detect solution, verify that there are no leaks present at the connections.
6. Close the left and right cylinder valves.
7. Open the bleed valve in the manifold to vent the system until all gas has been removed from the manifold.
8. Close the bleed valve.
9. Connect the electrical power source and supply electrical power to the manifold.
10. Observe the cabinet system status indicators. Verify that both green indicators and both red indicators are lit.
11. Slowly open one cylinder valve on the left bank of cylinders.
12. Open the bleed valve so as to create a slight flow of gas through the manifold.
13. Close the bleed valve.
14. Verify that the left intermediate gauge indicates the pressure as shown in the specification chart in Section 1 for the primary regulator pressure (page 1-3). Adjust the left primary regulator as necessary to obtain the required pressure.
15. Observe the intermediate gauge for two minutes. Verify that the primary regulator does not exhibit "creep" or an increase in pressure.
16. Verify that the left side cylinder contents gauge indicates a minimum of 1400 psig for Oxygen, Nitrogen, Air, or gas mixtures systems. Nitrous Oxide and Carbon Dioxide systems should indicate a minimum of 600 psig.
17. Verify that the line pressure gauge is indicating a minimum of 50 psig on all systems except Nitrogen. Nitrogen should indicate a minimum of 160 psig. Adjust to the proper line pressure if necessary.
18. Open the bleed valve so as to create a slight flow of gas through the manifold.
19. Turn off the left cylinder valve and allow all gas to vent from the manifold.
20. Close the bleed valve.
21. Slowly open one cylinder valve on the right bank of cylinders.
22. Open the bleed valve so as to create a slight flow of gas through the manifold.
23. Close the bleed valve.
24. Verify that the right intermediate gauge indicates the pressure as shown in the specification chart in Section 1 for the primary regulator pressure (page 1-3). Adjust the right primary regulator as necessary to obtain the required pressure.

25. Observe the intermediate gauge for two minutes. Verify that the primary regulator does not exhibit "creep" or an increase in pressure.

26. Verify that the right side cylinder contents gauge indicates a minimum of 1400 psig for Oxygen, Nitrogen, Air, or gas mixtures systems. Nitrous Oxide and Carbon Dioxide systems should indicate a minimum of 600 psig.

27. Verify that the line pressure gauge is indicating a minimum of 50 psig on all systems except Nitrogen. Nitrogen should indicate a minimum of 160 psig. Adjust to the proper line pressure if necessary.

28. Verify that the line pressure regulator is functioning properly by observing the line pressure gauge for two minutes. The gauge should indicate the same pressure at the end of the two minute period.

29. Open the bleed valve to create a slight flow of gas through the manifold.

30. Verify that the line pressure regulator maintains a constant pressure by observing the line pressure gauge.

31. Close the bleed valve.

32. Verify the cabinet system status indicators. The green indicator on the right side should be lit signifying that the right bank of cylinders is in service. The red indicator on the left side should be lit signifying that the left side of the manifold has not been pressurized.

33. S-o-w-l-y open one cylinder valve on the left bank of cylinders.

34. Observe the cylinder contents pressure gauges to verify cylinder pressure.

35. Observe the cabinet system status indicators. The red indicator on the left side should have been extinguished and the yellow "ready for use" indicator should be lit.

36. Close the cylinder valve on the right bank of cylinders.

37. Open the bleed valve to create a slight flow of gas through the manifold while observing the cylinder contents gauges. The right cylinder bank gauge should begin to drop (in oxygen manifold units there will be a pressure rise before the pressure will drop); the left cylinder bank gauge should remain constant.

38. Observe the intermediate pressure gauge as the right side pressure continues to drop.

39. As the cylinder pressure drops on the right side, the intermediate area also loses pressure. Verify that the pressure falls to the set point of the low pressure switch on the right side (see the specification chart in Section 1), the left solenoid valve then opens and the right intermediate pressure should stay at the low pressure switch set point.

40. Close the bleed valve.

41. Observe the cabinet system status indicators. The green indicator on the left side should be lit signifying that the left bank of cylinders is in service. The red indicator on the right side should be lit signifying that the right side of the manifold is not pressurized.

42. S-o-w-l-y open one cylinder valve on the right bank of cylinders.

43. Observe the cylinder contents pressure gauges to verify cylinder pressure.

44. Observe the cabinet system status indicators. The red indicator on the right side should have been extinguished and the yellow "ready for use" indicator should be lit.
45. Close the cylinder valve on the left bank of cylinders.

46. Open the bleed valve to create a slight flow of gas through the manifold while observing the cylinder contents gauges. The left cylinder bank gauge should begin to drop (in oxygen manifold units there will be a pressure rise before the pressure will drop); the right cylinder bank gauge should remain constant.

47. Observe the intermediate pressure gauge as the left side pressure continues to drop.

48. As the cylinder pressure drops on the left side, the intermediate area also loses pressure. Verify that the pressure falls to the set point of the low pressure switch on the left side (see the specification chart in Section 1), the right solenoid valve then opens and the left intermediate pressure should stay at the low pressure switch set point.

49. Close the bleed valve.

50. Observe the cabinet system status indicators. The green indicator on the right side should be lit signifying that the right bank of cylinders is in service. The red indicator on the left side should be lit signifying that the left side of the manifold is not pressurized.

51. Remove the cover from the power supply box and connect an ohmmeter across the normally open (N/O) and common (C) terminals on the right side of the circuit board terminals # 6 and # 7 respectively). Verify an ohmmeter reading of infinite resistance.

52. Slowly open one cylinder valve on the left bank of cylinders.

53. The ohmmeter should register approximately zero (0) ohms resistance as soon as the cylinder pressure on the left side increases above 500 psig. (300 psig for HQ2HL manifolds).

54. Close the cylinder valve on the right bank of cylinders.

55. Open the bleed valve to create a slight flow of gas through the manifold while observing the cabinet system status lights.

56. As soon as the manifold status indicators change, the ohmmeter should read infinite resistance.

57. Close the bleed valve.

58. Slowly open one cylinder valve on the right bank of cylinders.

59. The ohmmeter should register approximately zero (0) ohms resistance as soon as the cylinder pressure on the right side increases above 500 psig. (300 psig for HQ2HL manifolds).

60. Close the cylinder valve on the left bank of cylinders.

61. Open the bleed valve to create a slight flow of gas through the manifold while observing the cabinet system status lights.

62. As soon as the manifold status indicators change, the ohmmeter should read infinite resistance.

63. Close the bleed valve.

64. Close the cylinder valve on the right bank of cylinders.

65. Open the bleed valve and vent all remaining gas from the manifold. Verify that the ohmmeter continues to read infinite resistance.

66. Observe the cabinet system status indicators. Both green indicators and both red indicators should be lit.

67. Close the bleed valve. Remove the hose connection used to vent gas to the outside, if applicable.

68. Close the manifold cover using the two screws in the corners on the right side of the cover to secure it.

69. Remove the ohmmeter leads from the connections in the power supply box and reinstall the box cover.
<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>REMEDY OR CHECK</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>CABINET INDICATOR LIGHTS</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No indicator lights on front panel come on when power is hooked up.</td>
<td>Power Input.</td>
<td>Check electrical power supply.</td>
</tr>
<tr>
<td></td>
<td>Internal wiring disconnected.</td>
<td>Check all wiring connections.</td>
</tr>
<tr>
<td></td>
<td>Manifold controller PCB defective.</td>
<td>Replace manifold controller PCB.</td>
</tr>
<tr>
<td>Red Indicator light is on but both banks are full. (Note: Full cylinder pressure is considered to be pressure above the high pressure switch setting-see page 1-3).</td>
<td>Master valve, header valves, or cylinder valves on bank are closed.</td>
<td>Slowly open valves.</td>
</tr>
<tr>
<td></td>
<td>Low pressure switch set to open above the primary regulator setting.</td>
<td>Adjust pressure switch or return faulty unit for factory setting.</td>
</tr>
<tr>
<td></td>
<td>Primary regulator setting below the low pressure switch setting.</td>
<td>Set primary regulator delivery pressure to specifications.</td>
</tr>
<tr>
<td></td>
<td>Bank pressure below high pressure switch setting.</td>
<td>Replace cylinders if below switch factory setting. Adjust pressure switch if necessary.</td>
</tr>
<tr>
<td>Red indicator light does not come on when one bank is empty and changeover occurs.</td>
<td>Light burned out.</td>
<td>Replace manifold controller PCB.</td>
</tr>
<tr>
<td>Red indicator light does not come on when one bank is empty. Changeover does not occur.</td>
<td>Low pressure switch set to open at zero pressure.</td>
<td>Adjust pressure switch or return faulty unit for factory setting.</td>
</tr>
<tr>
<td>Green indicator light does not come on even though bank is in service.</td>
<td>Low pressure switch wiring disconnected.</td>
<td>Check wiring connections.</td>
</tr>
<tr>
<td></td>
<td>Manifold controller PCB defective.</td>
<td>Replace manifold controller PCB.</td>
</tr>
<tr>
<td>Yellow indicator light comes on even though one bank of cylinders is empty.</td>
<td>High pressure switch set to open at too low a pressure.</td>
<td>Adjust pressure switch or return faulty unit for factory setting.</td>
</tr>
<tr>
<td>Yellow indicator light is on when side should be in service.</td>
<td>Low pressure switch wiring disconnected.</td>
<td>Check wiring connections.</td>
</tr>
<tr>
<td></td>
<td>Flow capacity too high forcing premature changeover.</td>
<td>Reduce flow demand.</td>
</tr>
<tr>
<td>SYMPTOM</td>
<td>PROBABLE CAUSE</td>
<td>REMEDY OR CHECK</td>
</tr>
<tr>
<td>--------------------------------------------------</td>
<td>----------------------------------------------------</td>
<td>-------------------------------------------------------</td>
</tr>
<tr>
<td><strong>'RESERVE IN USE' SIGNAL</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote alarm signal stays in one mode constantly regardless of changeover status.</td>
<td>Power supply wiring is incorrect.</td>
<td>Check wiring connections on both power supply terminal strips.</td>
</tr>
<tr>
<td></td>
<td>Flow demand too high.</td>
<td>Reduce flow demand.</td>
</tr>
<tr>
<td></td>
<td>Power supply PCB defective.</td>
<td>Replace power supply PCB.</td>
</tr>
<tr>
<td>Remote alarm signals are opposite of manifold status.</td>
<td>Faulty connection to remote alarm unit.</td>
<td>Check input from alarm unit to terminal strip.</td>
</tr>
<tr>
<td><strong>'ABNORMAL' LINE PRESSURE SIGNAL</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low pressure alarm activated.</td>
<td>Line pressure regulator improperly adjusted.</td>
<td>Readjust line pressure regulator.</td>
</tr>
<tr>
<td></td>
<td>Closed master valves, header valves, or cylinder valves.</td>
<td>Slowly open valves.</td>
</tr>
<tr>
<td></td>
<td>Empty cylinders.</td>
<td>Replace with full cylinders.</td>
</tr>
<tr>
<td></td>
<td>Primary regulator setting too low.</td>
<td>Set delivery pressure to specifications.</td>
</tr>
<tr>
<td></td>
<td>Faulty line pressure gauge.</td>
<td>Replace line pressure gauge.</td>
</tr>
<tr>
<td></td>
<td>Faulty alarm pressure switch.</td>
<td>Readjust or replace pressure switch as necessary.</td>
</tr>
<tr>
<td>High pressure alarm activated.</td>
<td>Line regulator setting too high.</td>
<td>Readjust line pressure regulator.</td>
</tr>
<tr>
<td></td>
<td>Regulator freeze-up. (Nitrous oxide or carbon dioxide)</td>
<td>Reduce the flow demand or increase the number of supply cylinders.</td>
</tr>
<tr>
<td></td>
<td>Faulty line pressure gauge.</td>
<td>Replace line pressure gauge.</td>
</tr>
<tr>
<td></td>
<td>Faulty alarm pressure switch.</td>
<td>Readjust or replace pressure switch as necessary.</td>
</tr>
<tr>
<td><strong>LOSS OF CYLINDER CONTENTS</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audible or inaudible gas leakage (unknown origin).</td>
<td>Leakage at manifold piping connections.</td>
<td>Tighten, reseal or replace.</td>
</tr>
<tr>
<td></td>
<td>Leakage at manifold tubing connections.</td>
<td>Tighten, reseal or replace.</td>
</tr>
<tr>
<td></td>
<td>Leakage in downstream piping system.</td>
<td>Repair as necessary.</td>
</tr>
<tr>
<td>SYMPTOM</td>
<td>PROBABLE CAUSE</td>
<td>REMEDY OR CHECK</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>LOSS OF CYLINDER CONTENTS (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audible or inaudible gas leakage (unknown origin) (continued)</td>
<td>Leakage at cylinder valve.</td>
<td>Replace cylinder.</td>
</tr>
<tr>
<td></td>
<td>Gauge leaks.</td>
<td>Reseal or replace.</td>
</tr>
<tr>
<td></td>
<td>Regulator leaks.</td>
<td>Repair or replace.</td>
</tr>
<tr>
<td>Venting at relief valve.</td>
<td>Line regulator setting too high.</td>
<td>Set delivery pressure to specifications.</td>
</tr>
<tr>
<td></td>
<td>Overpressure due to creeping or faulty regulation by primary regulator.</td>
<td>Replace regulator seat and nozzle components.</td>
</tr>
<tr>
<td></td>
<td>Overpressure due to creeping or faulty regulation by line regulator.</td>
<td>Replace regulator seat and nozzle components.</td>
</tr>
<tr>
<td></td>
<td>Regulator freeze-up. (Nitrous oxide or carbon dioxide)</td>
<td>Reduce the flow demand or increase the number of supply cylinders.</td>
</tr>
<tr>
<td></td>
<td>Heater failure. (Nitrous oxide or carbon dioxide)</td>
<td>Reduce the flow demand or increase the number of supply cylinders.</td>
</tr>
<tr>
<td>Gas leakage around regulator body or bonnet.</td>
<td>Loose bonnet.</td>
<td>Tighten bonnet.</td>
</tr>
<tr>
<td></td>
<td>Diaphragm leak on regulator.</td>
<td>Replace diaphragm.</td>
</tr>
<tr>
<td>Gas leakage around valve stem or packing nut on master valve or header valve.</td>
<td>Valve packing leaks.</td>
<td>Tighten packing nut.</td>
</tr>
<tr>
<td></td>
<td>Faulty valve.</td>
<td>Repair or replace valve.</td>
</tr>
<tr>
<td>LOSS OF RESERVE BANK CONTENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both banks feeding.</td>
<td>Solenoid valve seat leak.</td>
<td>Replace solenoid valve.</td>
</tr>
<tr>
<td></td>
<td>Faulty primary regulator.</td>
<td>Replace regulator seat and nozzle components.</td>
</tr>
<tr>
<td></td>
<td>Loss of electrical power.</td>
<td>Check electrical power supply.</td>
</tr>
<tr>
<td></td>
<td>Faulty primary regulator.</td>
<td>Replace regulator seat and nozzle components.</td>
</tr>
<tr>
<td></td>
<td>Faulty solenoid bypass check valve.</td>
<td>Replace solenoid bypass.</td>
</tr>
<tr>
<td>SYMPTOM</td>
<td>PROBABLE CAUSE</td>
<td>REMEDY OR CHECK</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>----------------------------------------------------</td>
<td>------------------------------------------------------</td>
</tr>
<tr>
<td>LOSS OF RESERVE BANK CONTENTS (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opposite bank feeding.</td>
<td>Solenoid valve wiring incorrect.</td>
<td>Swap wiring from one solenoid valve to the other.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduce flow demand.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set delivery pressure per specifications.</td>
</tr>
<tr>
<td>Premature changeover to reserve bank.</td>
<td>Flow demand too high.</td>
<td>Readjust line pressure regulator.</td>
</tr>
<tr>
<td></td>
<td>Primary regulator setting too low.</td>
<td>Readjust line pressure regulator.</td>
</tr>
<tr>
<td>PIPELINE DISTRIBUTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipeline not at desired pressure.</td>
<td>Line regulator not set correctly.</td>
<td>Consult factory.</td>
</tr>
<tr>
<td>Required gas flow not available.</td>
<td>Line regulator not set correctly.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flow demand too high.</td>
<td></td>
</tr>
<tr>
<td>MANIFOLD LOCKS UP OR WON'T FLOW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserve bank won't flow, or the manifold locks up and neither bank will flow.</td>
<td>Leakage at outlet fitting of the solenoid that will not open.</td>
<td>1) Remove power from the system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Primary regulator set pressure 150 psig higher than the change-over pressure.</td>
<td>1) Remove power from the system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


This page intentionally left blank.
SERVICE PROCEDURES

GENERAL MAINTENANCE

1. Main section
   a) Daily - record line pressure.
   b) Monthly
      1) Check regulators, valves and compression fittings for external leakage.
      2) Check valves for closure ability.
   c) Annually
      1) check relief valve pressures.
      2) Check regulator seats

2. Manifold header
   a) Daily - observe Nitrous Oxide and Carbon Dioxide systems for cylinder frosting or surface condensation. Should excessive condensation or frosting occur it may be necessary to increase the number of cylinders or add external heaters.
   b) Monthly
      1) Inspect valves for proper closure.
      2) Check cylinder pigtails for cleanliness, flexibility, wear, leakage, and thread damage. Replace damaged pigtails immediately.
      3) Inspect pigtail check valves for closure ability.
   c) Every 4 Years
      1) Replace all pigtails

WARNING
- Repairs to manifold high pressure regulators, valve connections and piping should be made only by qualified personnel. Improperly repaired or assembled parts could fly apart when pressurized causing death or serious injury.

SAFETY PRECAUTIONS

1. Examine all parts before repair. Note: Because manifold parts may be exposed to high pressure Oxygen and Nitrous Oxide and the condition of the unrepaired parts is unknown, a repair-inspection should be performed before exposing the parts to high pressure gas.

2. Keep manifold parts, tools and work surfaces free of oil, grease and dirt. These and other flammable materials may ignite when exposed to high pressure Oxygen or Nitrous Oxide.

3. Use only proper repair tools and parts. Parts for Western manifolds are shown in this instruction. Special tools are called out as needed.

4. Before connecting the cylinder to the manifold, momentarily open and close the cylinder valve to blow out any dirt or debris.

5. After connecting the cylinder to the manifold, open the cylinder valve s-l-o-w-l-y to allow the heat of compression to dissipate.

6. Use only cleaning agents, sealants, and lubricants as specified in this instruction.
CLEANING, LUBRICATION, AND SEALING

Clean metal parts of the manifold with isopropyl alcohol prior to assembly. Dry thoroughly. Do not clean o-rings with this solvent (Freon TF is acceptable).

Teflon® Tape Application

Threaded pipe connections should be sealed with Teflon® tape.

Remove the old sealant from both male and female threads. Apply Teflon® tape to the male pipe thread. Approximately 1 1/2 turns of tape should be sufficient. Do not cover the first thread with tape. Assemble the fittings wrench tight to effect a gastight seal.

Assembly and Disassembly of Compression Fittings

Mark the fitting and nut prior to disassembly. Before retightening, make sure the assembly has been inserted into the fitting until the ferrule seats in the fitting. Retighten the nut by hand. Torque the nut with a wrench until the marks line up, which indicates that the fitting has been tightened to its original position. A noticeable increase in mechanical resistance will be felt indicating the ferrule is being resprung into sealing position. Then snug the nut 1/12 of a turn (1/2 of a wrench flat) past the original position.

Leak Testing

There are four types of manifold piping connections: sealed (soldered), threaded (unions and elbows), compression (tubing connections), and gasket (diaphragms and o-rings).

When a leak is suspected and cannot be easily located, a leak detector solution should be applied to all connections (in the event of leaks at more than one connection). Be certain to wipe fittings dry after testing to prevent corrosion (Western’s LT-100 leak detector dries clean and will not harm apparatus).

If a leak is detected at:

- **sealed connections**, replace the assembly which is joined by the leaking connection.

- **threaded connections**, union sealing surfaces may have burrs or nicks which may be polished out. Be certain to clean parts before reassembly. If the surface will not seal, replace the union. Elbows and tees may be cleaned of old sealant and resealed with Teflon® tape. Refer to cleaning, sealing, and lubricating instructions.

- compression fittings, sealing surfaces of fittings or brass ferrules may be damaged and must be replaced. Refer to the parts list for appropriate tubing.

- **gasket seals**, leaks may occur at seals made by gaskets such as diaphragms or o-rings. Gas may leak to atmosphere or across the seal into the opposite pressure circuit. External leaks are evidenced by application of leak detector while leaks across the seal are detected by faulty manifold function. When replacing seals, use care not to damage sealing surfaces.
GENERAL REPAIR PROCEDURES

Be sure all pressure and electrical power is removed from the system prior to initiating any repair procedures.

WARNING

- Do not shutdown the manifold until all personnel have been advised of the intended service and all patients requiring medical gas are being supplied from portable supplies. Patients still on the manifold pipeline will not receive gas.

Replace parts with all components in the repair kit.

HOW TO SHUTDOWN THE MANIFOLD*

1. Turn off the piping system isolation valve, if present. If an isolation valve is not present, the entire building’s gas system will be reduced to atmospheric pressure. WARNING: Do not shutdown the manifold until all personnel have been advised of the intended service and all patients requiring medical gas are being supplied from portable supplies.

2. Turn off right and left supply bank cylinder valves.

3. Open the manifold cover by removing the two screws in the corners on the right side and open the bleed valve to vent residual gas. Residual gas could also be vented by loosening the manifold outlet connection to the supply main.

4. Close the bleed valve. Tighten the manifold outlet connection if gas was vented by that method.

5. Disconnect electrical power from the manifold at the main power source.

*Just removing the power will not shut the manifold down.
HIGH PRESSURE SWITCH REPLACEMENT
Refer to Figure 4-2

Removal
1. Shutdown the manifold as explained earlier.
2. Disconnect the wiring from the pressure switch.
3. Using a 1-1/4 open end wrench remove the pressure switch from the inlet block.
4. Remove old sealant from the pipe fitting.

Replacement
1. Apply Teflon® tape to the 1/4 NPT male pipe thread of the pressure switch inlet fitting.
4. Using a 1-1/4 open end wrench install the pressure switch into the inlet block.
6. Complete the adjustment instructions below prior to installing the signal wires to the pressure switch.

Pressure Switch Adjustment

CAUTION:
- Adjusting nut will turn easily until it hits a stop. Do not over torque; over torquing may cause damage. A damaged switch may burst or fly apart when pressurized.

1. The plastic housing is rotated to adjust the pressure switch.
2. Connect an ohmmeter to the normally closed and common electrical contacts on the switch. The ohmmeter should register zero resistance.
3. Begin pressurizing the manifold by opening one cylinder valve on the side of the manifold the switch is on.
4. Observe the cylinder pressure gauge and the ohmmeter to determine switch setting:
   At the actuation pressure, the ohmmeter reading should jump from zero resistance to infinite resistance.
5. Cycle between actuation and reactuation signals and make adjustment to the nut as required to achieve the signal setting per the Adjustment Specifications chart in Section 1. The actuation pressure setting should be made on increasing pressure only. The reactuation point will be slightly lower than the acutation point.

WARNING:
- Be sure power is off when electrical connections are made. Current flowing through the wires may shock the service technician.

6. After the setting has been made, connect the signal wires to the common (C) and normally closed (N/C) contacts on the pressure switch.
LOW PRESSURE SWITCH REPLACEMENT

Refer to figure 4-3

Removal

1. Shutdown the manifold as explained earlier in this section.
2. Loosen the slot head screws on the pressure switch using a flat blade screwdriver and remove the wires.
3. Using a 13/16" open end wrench, remove the pressure switch from the mounting block.
4. Remove old sealant from the threads in the mounting block.

CAUTION:
- Do not stand directly in front of the valve when performing the next step. Eye protection should be worn to protect the service technician. Chips and/or debris may be propelled into unprotected eyes.

5. Blow out the internal pipe threads with oil free Air or Nitrogen to remove all foreign material.

Replacement

1. Apply Teflon® tape to the pipe threads on the new pressure switch.
2. Install the pressure switch in the mounting block using a 13/16" open end wrench and tighten to effect a gas tight seal.
3. Complete the adjustment instructions below prior to installing the signal wires to the pressure switch.

Pressure Switch Adjustment

1. Connect an ohmmeter to the normally closed and common electrical contacts on the switch. The ohmmeter should register zero resistance.
2. Begin pressurizing the manifold by opening one cylinder valve on the side of the manifold the switch is on: At the actuation pressure, the ohmmeter reading will jump from zero resistance to infinite resistance.
3. Close the cylinder valve.
4. Open the bleed valve slightly to relieve pressure from the manifold while observing the intermediate pressure gauge and ohmmeter to determine switch setting: At actuation pressure, the ohmmeter reading should drop from infinite resistance to zero resistance.
5. Close the bleed valve.
6. Using a flat blade screwdriver, turn the knurled adjustment screw on the pressure switch clockwise to raise the set point or counterclockwise to lower the set point. The pressure switch should be set per the Adjustment Specification chart in Section 1.
7. Cycle between actuation and reactivation signals and make adjustments as required to achieve the signal setting. The setting should be made on descending pressure. Make adjustments in response to the reading obtained in step 4.

WARNING:
- Be sure power is off when electrical connections are made. Current flowing through the wires may shock the service technician.

8. After the setting has been made, connect the signal wires to the common (C) and normally closed (N/C) contacts on the pressure switch.
MANIFOLD CONTROLLER PRINTED CIRCUIT BOARD REPLACEMENT
Refer to Figures 4-4 and 4-5

Removal

1. Shutdown the manifold as explained earlier in this section.

2. Disconnect the plug from the top of the circuit board by grasping the plug on each end with one hand and stabilizing the circuit board with the other. Work the plug back and forth side to side slightly while pulling up until it releases.

3. Press the locking feature of one circuit board support and pull the circuit board away from the manifold cover slightly until the circuit board slides over the lock.

4. Do the same at the other three corners of the circuit board.

5. Slide the circuit board and cover completely off of the supports.

6. Save the circuit board cover for installation with the new circuit board.

Replacement

1. Slide the new circuit board over the supports (plug edge on top, lights facing inside manifold cover).

2. Carefully line up the circuit board lights with the cap bases protruding through the manifold cover.

3. Firmly press each corner of the circuit board until the support locking feature snaps over the board.

4. Slide the circuit board cover over the circuit board supports and press snugly at the corners.

5. Carefully insert the plug into the circuit board using one hand to stabilize the board and the other to push the plug in place.

6. Close the cabinet cover.

7. Connect electrical power to the manifold and test for proper function by following the Performance Verification procedure in Section 3.
GAUGE REPLACEMENT
Refer to Figure 4-6

Removal

1. Shutdown the manifold as explained earlier in this section.
2. Use a flat blade screwdriver and remove the six gauge plate mounting screws.

CAUTION:
• Be careful not to kink or damage the tubing connected to the gauges. Damaged tubing may burst when pressurized.

3. Pull the mounting plate up so that it provides easy access to the gauge screws on the underside of the gauge plate.
4. Mark the compression fittings per instructions on page 4-2. Using a 7/16” open end wrench, disconnect the tubing from the defective gauge. When re-tightening the fitting the procedure outlined on page 4-2 shall be followed.
5. Using a 3/8” hex wrench, remove the two screws holding the gauge brackets. Slide the gauge brackets off of the screw posts.
6. Slide the gauge out through the front of the gauge plate.
7. Using a 3/4” hex wrench, remove the compression fitting from the gauge. Use a 9/16” open end wrench to stabilize the gauge.
8. Remove the old sealant from the 1/4 NPT female pipe thread on the compression fitting.

Replacement

1. Apply Teflon® tape to the 1/4 NPT male pipe thread on the new gauge and reassemble in the reverse order of the removal procedure.
2. Make sure gauge face is properly oriented through the front of the gauge plate.
3. If the gauge needle is not on zero, unscrew the gauge bezel and adjust the needle using a flat blade screwdriver.
4. Install the mounting screws to secure the gauge plate to the gauge brackets.

FIGURE 4-6 Gauge Plate Assembly

CAUTION:
• Be careful not to kink or damage the tubing connected to the gauges. Damaged tubing may burst when pressurized.
SOLENOID VALVE REPLACEMENT

NOTE:
- It may be desirable to remove the gauge plate brackets prior to disassembly for easier access to the solenoid valve. It is not necessary to remove the valve from the system for repairs.

To remove the gauge plate brackets, use a flat blade screwdriver to remove the 4 screws holding the gauges in place. The gauge plate brackets can now be removed by removing the eight mounting screws with a phillips head screwdriver.

Removal
1. Shutdown the manifold as explained earlier in this section.
2. Disconnect the electrical wires at the wire nut attachment points.
3. Mark the compression fittings per instructions on page 4-2, disconnect the tubing at the compression fittings using an 11/16" open end wrench.
4. Remove the solenoid assembly from the control section.
5. Remove the four valve bonnet screws, valve bonnet, disc holder sub-assembly, disc holder spring, diaphragm/spring sub-assembly, and body gasket. It may be necessary to bend body assembly and tubing to clear mounting bracket to ease removal of some parts.

Replacement
1. Position the solenoid assembly with the inlet end connected to the primary regulator outlet tubing.

NOTE:
- Should diaphragm/spring sub-assembly become disassembled, be sure to replace the diaphragm/spring support with the lip facing upward towards the valve bonnet.

2. Connect the compression fittings using an 11/16" open end wrench and tighten to effect gas tight seal. When retightening the compression fitting follow the procedure outlined on page 4-2.
INTERMEDIATE PRESSURE CHECK VALVE REPAIR

Refer to Figure 4-7

Removal

1. Shutdown the manifold as explained earlier in this section.

2. Mark the compression fittings per instructions on page 4-2. Disconnect the tubing at the compression fittings to the solenoid valve and the mounting block using an 11/16" open end wrench.

3. Remove the check valve and tubing assembly from the control section.

Disassembly

1. Secure the check valve in a vice or similar holding fixture. Using a 1 1/8" hex wrench, rotate the valve cap counterclockwise and remove.

2. Remove the seal washer from the valve cap.

3. Pull the spring from the valve body.

4. Using a small needle nose pliers or tweezers, grasp the valve poppet and remove it from the valve body.

5. Clean the interior of the valve body with isopropyl alcohol or 1,1,1 trichloroethane solvent.

CAUTION

- Do not stand directly in front of the valve when performing the next step. Eye protection should be worn to protect the service technician. Chips and/or debris may be propelled into unprotected eyes.

6. Blow out the check valve body with oil free Air or Nitrogen to remove all foreign material and dry all surfaces.

Reassembly

1. Insert a new valve poppet into the valve body.

2. Insert the spring into the valve body.

3. Position the new seal washer in the groove of the valve body.

4. Place the valve cap over the spring and push the cap towards the body until the threads engage. Rotate the cap clockwise and tighten securely.

Replacement

1. Position the check valve and tube assembly in the control section with the check valve flow arrow pointing away from the solenoid valve.

2. Connect the compression fittings to the solenoid valve and the mounting block following the instructions on page 4-2 using an 11/16" open end wrench and tighten to effect a gastight seal.
Primary Regulator Repair

NOTE:
- Removal and Replacement procedures are to be followed only if the primary regulator assembly is to be scrapped. All service may be performed to the primary regulator without removing it from the manifold.

Refer to Figures 4-8 and 4-9

Shutdown the manifold as explained earlier in this section.

Removal

1. Mark the compression fittings per instructions on page 4-2. Using an 11/16" open end wrench, disconnect the outlet tubing and the relief valve tubing from the regulator at the compression fittings.

2. Mark the compression fittings per instructions on page 4-2. Using a 7/16" open end wrench, disconnect the gauge tubing and pressure switch tubing from the regulator at the compression fittings.

3. Using two 1 1/8" open end wrenches, loosen the inlet nut from the mounting block adaptor. Continue to unscrew the nut by hand until the regulator can be removed from the manifold.

Disassembly

1. Remove the acorn nut from the regulator by turning it counterclockwise using a 3/4" hex wrench.

2. Using a flat blade screwdriver held sideways, turn the adjusting screw counterclockwise until it turns freely and all compression is removed from the bonnet spring.

3. Using a 1 3/8" hex wrench, rotate the bonnet counterclockwise and remove it along with the pivot, bonnet spring, washer, slip ring, and diaphragm sub-assembly.

4. Using a 13/16" hex socket wrench, rotate the nozzle counterclockwise and remove it along with the seat holder and stem, compensating spring, and the spring retainer. In oxygen manifolds these parts are contained in a cartridge valve assembly.

CAUTION:
- Do not stand directly in front of the valve when performing this step. Eye protection should be worn to protect the service technician. Chips and/or debris may be propelled into unprotected eyes.

5. Clean all interior surfaces of the regulator body with isopropyl alcohol.

6. Blow out the regulator body and ports with oil free Air or Nitrogen to remove all foreign materials and dry all surfaces.

Reassembly

1. Apply a thin coating of Fluorolube® S-30 lubricant to the o-rings.
   Note: steps 2—6 are not applicable to Oxygen regulator cartridge valve assemblies.

2. Assemble small o-rings with the spring retainer. Push the smaller o-ring to the bottom of the bore it rests in.

3. Assemble the large o-ring with the nozzle.

4. Insert the new seat holder and stem into the nozzle. The silver colored end of the seat holder and stem must enter the nozzle first.

5. Place the compensating spring over the seat holder and stem.
* This O-Ring is not used on manifolds with S/N 20800 and greater.
** Some regulators do not include this filter or gasket. When installing a repair kit, the filter and gasket should be installed.
FIGURE 4-9  Primary Regulator - Oxygen S/N up to 11348

Legend

1 — Body
2 — Cartridge Assembly
3 — Diaphragm
4 — Slip Ring
5 — Washer
6 — Bonnet Spring
7 — Pivot
8 — Bonnet
9 — Adjusting Screw
10 — Acorn Nut
11 — 1/8" Tube Fitting
12 — Inlet Nut
13 — Inlet Nipple
14 — 90° 1/8" Tube Fitting
15 — 90° Elbow
16 — 90° 3/8" Tube Fitting
17 — Relief Valve
18 — 3/8" Tube Fitting
6. Place the compensating spring retainer on the compensating spring. The boss on the retainer will enter the internal diameter of the spring and the larger o-ring will now be on top.

7. Grasp the flats of the nozzle with one hand and carefully guide the seat/nozzle assembly into the body of the regulator until the threads are engaged. Rotate the nozzle clockwise and hand tighten.

8. Using the 13/16" hex socket and torque wrench, tighten the nozzle to approximately 5 ft-lbs. torque.

9. Lubricate the outer (regulator body to diaphragm) sealing surface of the regulator body with a small amount of water. Do not allow water to enter the low pressure chamber of the regulator.

10. Hold the bonnet upside down and place the pivot and bonnet spring in the bore provided. The small diameter of the pivot should enter the internal diameter of the spring.

11. Place the washer in the large bonnet cavity, beveled side up.

12. Lay the slip ring on top of the washer.

13. Insert the diaphragm sub-assembly in the bonnet cavity. The side marked "UP" should be against the slip ring.

14. Carefully place the bonnet on the regulator body. Rotate the bonnet clockwise and tighten to 50-60 ft-lbs. torque.

Replacement

1. Connect the regulator inlet to the regulator port on the mounting block and assemble hand tight. Orient the regulator so the bonnet is facing towards the ground with the manifold mounted on a wall. Using two 1 1/8" open end wrenches, tighten the inlet nut/mounting block adaptor connection to effect a gas tight seal.

2. Using a 7/16" open end wrench, connect the pressure switch tubing to the 1/8" tube compression fitting located 90° from the inlet of the regulator. With the regulator installed and facing towards the ground, it is the fitting on the left side.

3. Connect the gauge tubing to the other 1/8" tube compression fitting on the regulator per tightening instructions on page 4-2.

4. Using an 11/16" open end wrench, connect the outlet tubing to the 3/8" tube compression fitting located 180° from the inlet of the regulator per tightening instructions on page 4-2.

5. Connect the relief valve tubing to the 3/8" tube compression fitting on the relief valve of the regulator per tightening instructions on page 4-2.

Primary Regulator Adjustment

1. If not already done, shutdown the manifold as explained earlier in this section, open the manifold cover, and remove the acorn nut from the primary regulator.

2. Slowly open one cylinder on the side of the regulator to be adjusted.

3. Verify the cylinder pressure gauge indicates a minimum pressure of 1400 psig on Oxygen, Air, and Nitrogen systems or a minimum of 600 psig on Nitrous Oxide and Carbon Dioxide systems.

4. Using a flat blade screwdriver held sideways, turn the adjusting screw of the regulator in while observing the intermediate pressure gauge. Set the regulator to the pressure indicated on the Adjustment Specification chart in Section 1.

5. Open the bleed valve so as to create a slight flow of gas through the manifold.

6. Re-adjust the regulator to the proper specifications if necessary.
7. Close the bleed valve. The intermediate pressure gauge will go up slightly higher than the flowing adjusted pressure.

8. Verify that the regulator does not creep by observing the intermediate pressure gauge for two minutes. The gauge must indicate the same pressure at the end of the two minute period.

9. Close the cylinder valve.

10. Open the bleed valve to remove residual gas from the manifold.
11. Close the bleed valve after the gas pressure has been exhausted from the manifold.

12. Install the lock nut on the primary regulator.

**LINE REGULATOR REPAIR**

Refer to Figures 4-10 and 4-11

**Removal**

1. Turn the three way bypass valve to feed the reserve line regulator. The manifold does not have to be shut down.

2. Mark the compression fittings per instructions on page 4-2. Use a 11/16” open end wrench to loosen the nuts.

3. Carefully remove the line regulator from the manifold.

**Disassembly**

1. Place the regulator in a vise or similar holding fixture.

2. Using an 11/16” open end wrench, loosen the locknut on the regulator adjusting screw and back off the adjusting screw until it turns freely and all compression is removed from the bonnet spring.

3. Using a 1 1/2” hex wrench, remove the backcap and conical spring from the regulator.

4. Remove the gasket from the backcap and discard.

5. Use a phillips head screwdriver to remove the six screws attaching the bonnet to the body. Lift the bonnet off of the body and set aside the bonnet, pivot, bonnet spring, and screws.

6. The diaphragm assembly and the seat/stem assembly are attached at each end of the stainless steel rod. The stainless steel rod is threaded on both ends. Using a 5/8” hex wrench to stabilize the diaphragm assembly, reach under the regulator with a 1/4” open end wrench, placing it over the wrench flats provided on the bottom of the seat assembly, and loosen the seat assembly. The seat can be unscrewed by hand after loosening. Remove and discard the diaphragm and seat assemblies.

**Reassembly**

1. Set the new diaphragm assembly on the body with the spring retainer facing up.

2. Insert the new stem/seat assembly through the backcap port and screw into the diaphragm assembly by hand. Stabilize the diaphragm assembly using one hand and snug up the seat/stem assembly with the other hand using a 1/4” open end wrench. Do not over tighten.

3. Place the new gasket in the backcap groove.

4. Place the conical spring, large end first, into the backcap cavity.

5. Carefully line up the spring small end so that it slides over the wrench flats on the seat/stem assembly and screw the backcap into position. Tighten with a 1 1/2” hex wrench.
6. Line up the diaphragm holes with the screw holes in the body.

7. Set the bonnet spring in the retainer on the diaphragm assembly.

8. Set the pivot on top of the spring, pointed end down.

9. Set the bonnet carefully over the spring and pivot and line up the screw holes in the bonnet with the screw holes in the body.

10. Insert the six screws in the screw holes and tighten by hand. Use a phillips head screwdriver and tighten the screws in a crisscross manner.

11. Remove the regulator from the vice.

**Replacement**

1. Install the regulator in the manifold.

2. Tighten the inlet and outlet union connections per the instructions on page 4-2. Use a 11/16" open end wrench to snug up the connections per instructions on page 4-2.

3. Leak test all of the line regulator connections and the connections on the check valve.

*FIGURE 4-11 Line Regulator*
MAINTENANCE & REPAIR PARTS

NOTE:
- Western manifold systems are designed and tested for optimal performance and adherence to safety specifications. We recommend the use of Western replacement components to maintain the standards of performance and the safety of the product.

REPLACEMENT PIGTAILS

24” Stainless Steel Flexible Braid with Check Valves
 PF-320CV-24R .......... CGA 320 for Carbon Dioxide (CO₂) Service
 PF-326CV-24R .......... CGA 326 for Nitrous Oxide (N₂O) Service
 PF-346CV-24R .......... CGA 346 for Breathing Air (Air) Service
 PF-63CV-24 .......... CGA 540 for Oxygen (O₂) Service
 PF-92CV-24R .......... CGA 580 for Nitrogen (N₂) Service
 PF-280CV-24 .......... CGA 280 for Medical Mixtures

24” Synthetic Fiber Braid Hose with Check Valve
 PFS-92CV-24R .......... CGA 580 for Helium (He) Service

INDICATOR LAMP REPLACEMENT PARTS (for Nitrous Oxide or Carbon Dioxide Heater)
 WME-8-5 ................. Bulb Receptacle
 WME-8-8 .................. Amber Lens
 WME-8-10 ............... 115 V Light Bulb

PANEL MOUNT GAUGES — 2" Diameter, 1/4" NPT Back Port
 WMG-3-3 .................. 100 psi
 WMG-3-4 .................. 400 psi
 WMG-3-8 .................. 2000 psi
 WMG-3-12 ............... 4000 psi

INTERMEDIATE BOTTOM MOUNT GAUGES — 1.5” Diameter, 1/8” NPT Bottom Port
 G-15-400 .................. 400 psi

REGULATORS AND REGULATOR REPAIR KITS

8534* ...................... Primary Regulator for HQ2 & HQ2HL - (N₂O, CO₂, Breathing Air, He) S/N up to 20799
8534A ....................... Primary Regulator for HQ2 (Breathing Air, He) S/N 20800 and greater
8534B ....................... Primary Regulator for HQ2HL (CO₂ & N₂O) S/N 20800 and greater
8532* ...................... Primary Regulator for HQ2HP-(N₂) S/N up to 20799
8532A ...................... Primary Regulator HQ2HP (N₂) S/N 20800 and greater
8530A* ..................... Primary Regulator for HQ2-9, HQ2-12 & HQ2-13 S/N up to 11348
8538* ..................... Primary Regulator for HQ2-9, HQ2-12 & HQ2-13 S/N greater than 11348, up to 20799
8538A ..................... Primary Regulator for HQ2 (Oxygen) S/N 20800 and greater
8430 ...................... Line Regulator - (HQ2HP All Gases)
8431 ...................... Line Regulator (HQ2 & HQ2HL All Gases)
RK-1020 .................. Repair Kit for # 8534 & # 8532 - (N₂O, CO₂, He, Air, N₂)
RK-1100 .................. Repair Kit for # 8430 & 8431 - All gases (Shipped prior to 6/1/95)
RK-1100M ................ Repair Kit for 8430 & 8431 - All gases (Shipped after 6/1/95)
RK-1023 .................. Repair Kit for # 8430A - (O₂ and Medical Breathing Mixtures)
RK-1033 .................. Repair Kit for 8538
RK-1037 .................. Repair kit for # 8534A, 8534B, and 8532A (N₂O, CO₂, Air, He, N₂)
RK-1038 .................. Repair kit for # 8538A (Oxygen)

* Replacement regulator not available. Use repair kit or request upgrade to latest version. If updating the regulators to the latest configuration both regulators and solenoid bypass check valves (P/N WMV-5-15 for Air, CO₂, N₂O, He and P/N WMS-1-134 for oxygen) must be replaced.
VALVES AND VALVE REPAIR KITS
8423 ...........................................Solenoid Valve for all HQ2 and HQ2HP - (Breathing Air, He, N₂, O₂)
8422 ...........................................Solenoid Valve for all HQ2HL - (N₂O and CO₂ manifolds)
WMS-1-53 ..........................CGA 540 Spud Check Valve
WMS-1-64 ..........................CGA 280 Spud Check Valve
WMV-2-7 ..........................CGA 320 Header Valve
WMV-2-4 ..........................CGA 346 Header Valve
WMV-2-14 ..........................CGA 326 Header Valve
WMV-2-3 ..........................CGA 580 Header Valve
WMV-2-54 ..........................Three Way Bypass Valve
WMV-2-16 ..........................Master Valve
WMV-5-15 ..........................Solenoid Bypass Check Valve
RK-1085 ..........................Repair Kit for # WMV-2-16

PRESSURE SWITCHES
8413 ...........................................High Pressure Switch for all series
WME-4-4 ..........................Low Pressure Switch (adjustable 0-300 psi)
WME-4-4C ..........................Low Pressure Switch (Oxygen)

POWER SUPPLY REPLACEMENT PARTS
8450 ..........................Manifold Controller PCB
8570D ..........................Power Supply Assembly (transformer, PCB, case, and cable)
WME-8-1 ..........................Power Supply PCB (includes dry contacts for remote alarms)

REMOTE ALARMS — 24 VAC Service
BIA-1 ..........................Visual - 1 Gas
BIA-2 ..........................Audio/Visual - 2 Gases
BIA-3 ..........................Audio/Visual - 1 Gas
**Western Enterprises**

**INNOVATOR**  
AUTOMATIC CHANGEOVER MANIFOLD  
HQ2 & HQ2HP Series  
Miscellaneous Hardware

**Repair Drawing**

<table>
<thead>
<tr>
<th>KEY #</th>
<th>DESCRIPTION</th>
<th>PART #</th>
<th>KEY #</th>
<th>DESCRIPTION</th>
<th>PART #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Outlet Grommet</td>
<td>8281</td>
<td>13</td>
<td>Mounting Screw</td>
<td>WMC-6-49</td>
</tr>
<tr>
<td>2</td>
<td>Inlet Grommet</td>
<td>8280</td>
<td>14</td>
<td>3/8-16 x 3&quot; Bolt</td>
<td>8170</td>
</tr>
<tr>
<td>3</td>
<td>Plug</td>
<td>8282</td>
<td>15</td>
<td>Block Spacer</td>
<td>8151</td>
</tr>
<tr>
<td>4</td>
<td>Wire Clip</td>
<td>8242</td>
<td>16</td>
<td>3/8&quot; Lock Washer</td>
<td>8171</td>
</tr>
<tr>
<td>5</td>
<td>Printed Circuit Board</td>
<td>8450</td>
<td>17</td>
<td>3/8-16 Hex Nut</td>
<td>WMC-6-6</td>
</tr>
<tr>
<td>6</td>
<td>PCB Cover</td>
<td>8246</td>
<td>18</td>
<td>Wiring Harness</td>
<td>8571</td>
</tr>
<tr>
<td>7</td>
<td>Red Lens</td>
<td>8243</td>
<td>19</td>
<td>Screw Receptacle</td>
<td>WMC-6-35</td>
</tr>
<tr>
<td>8</td>
<td>Yellow Lens</td>
<td>8244</td>
<td>20</td>
<td>3/16-32 X 3&quot; Bolt</td>
<td>EQ-106</td>
</tr>
<tr>
<td>9</td>
<td>Green Lens</td>
<td>8245</td>
<td>21</td>
<td>3/16 Lock Washer</td>
<td>WMC-6-12</td>
</tr>
<tr>
<td>10</td>
<td># 6-32 Self-Tapping Screw</td>
<td>WMC-2-29</td>
<td>22</td>
<td>3/16-32 Hex nut</td>
<td>WMC-6-8</td>
</tr>
<tr>
<td>11</td>
<td>PCB Support 1/2&quot;</td>
<td>8240</td>
<td>*</td>
<td>Wire Nut</td>
<td>WME-8-58</td>
</tr>
<tr>
<td>12</td>
<td>Outlet Block Spacer</td>
<td>WLF-6-66</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Item not pictured.
### Western Enterprises

**INNOVATOR**

**AUTOMATIC CHANGEOVER MANIFOLD**

**HQ2HL Series**

**Miscellaneous Hardware**

---

<table>
<thead>
<tr>
<th>KEY #</th>
<th>DESCRIPTION</th>
<th>PART #</th>
<th>KEY #</th>
<th>DESCRIPTION</th>
<th>PART #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Outlet Grommet</td>
<td>8281</td>
<td>16</td>
<td>3/8&quot; Lock Washer</td>
<td>8171</td>
</tr>
<tr>
<td>2</td>
<td>Inlet Grommet</td>
<td>8280</td>
<td>17</td>
<td>3/8-16 Hex Nut</td>
<td>WMC-6-6</td>
</tr>
<tr>
<td>3</td>
<td>Strain Relief Bushing</td>
<td>WME-8-34</td>
<td>18</td>
<td>Wiring Harness</td>
<td>8571</td>
</tr>
<tr>
<td>4</td>
<td>Wire Clip</td>
<td>8242</td>
<td>19</td>
<td>115 Volt Bulb</td>
<td>WME-8-10</td>
</tr>
<tr>
<td>5</td>
<td>Printed Circuit Board</td>
<td>8450</td>
<td>20</td>
<td>Indicator Receptacle &amp; Lens</td>
<td>WME-8-72</td>
</tr>
<tr>
<td>6</td>
<td>PCB Cover</td>
<td>8246</td>
<td>21</td>
<td>Wire Terminal</td>
<td>WME-8-77</td>
</tr>
<tr>
<td>7</td>
<td>Red Lens</td>
<td>8243</td>
<td>22</td>
<td>16 Gage Wire 16&quot;</td>
<td>WME-8-57</td>
</tr>
<tr>
<td>8</td>
<td>Yellow Lens</td>
<td>8244</td>
<td>23</td>
<td>Screw Receptacle</td>
<td>WMC-6-35</td>
</tr>
<tr>
<td>9</td>
<td>Green Lens</td>
<td>8245</td>
<td>24</td>
<td>3/16-32 X 3&quot; Bolt</td>
<td>EQ-106</td>
</tr>
<tr>
<td>10</td>
<td># 6-32 Self-Tapping Screw</td>
<td>WMC-2-29</td>
<td>25</td>
<td>3/16 Lock Washer</td>
<td>WMC-6-12</td>
</tr>
<tr>
<td>11</td>
<td>PCB Support 1/2&quot;</td>
<td>8240</td>
<td>26</td>
<td>3/16-32 Hex nut</td>
<td>WMC-6-8</td>
</tr>
<tr>
<td>12</td>
<td>Outlet Block Spacer</td>
<td>WLF-6-66</td>
<td>7</td>
<td>7’ Heater Cord</td>
<td>WME-8-33</td>
</tr>
<tr>
<td>13</td>
<td>Mounting Screw</td>
<td>WMC-6-49</td>
<td>*</td>
<td>Wire Nut</td>
<td>WME-8-58</td>
</tr>
<tr>
<td>14</td>
<td>3/8-16 x 3&quot; Bolt</td>
<td>8170</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Block Spacer</td>
<td>8151</td>
<td>* Item not pictured.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

*Item not pictured.*
## Western Enterprises

**INNOVATOR**

**AUTOMATIC CHANGEOVER MANIFOLD**

**HQ2 & HQ2HP Series**

### Manifold Components

*Bypass kit not on all solenoid assemblies.*

<table>
<thead>
<tr>
<th>KEY #</th>
<th>DESCRIPTION</th>
<th>PART #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gauge Plate Assembly for HQ2 &amp; HQ2-9 Series</td>
<td>8540</td>
</tr>
<tr>
<td></td>
<td>for HQ2HP Series</td>
<td>8541</td>
</tr>
<tr>
<td>2</td>
<td>Relief Piping Adaptor</td>
<td>WLF-3-12</td>
</tr>
<tr>
<td>3</td>
<td>3/8&quot; Tube Bulkhead</td>
<td>WLF-3-13</td>
</tr>
<tr>
<td>4</td>
<td>3/8&quot; Tube Tee</td>
<td>WLF-3-14</td>
</tr>
<tr>
<td>5</td>
<td>Left Solenoid Valve Assembly</td>
<td>8551L</td>
</tr>
<tr>
<td>6</td>
<td>3/8&quot; Tubing Reg-Right Sol</td>
<td>WLF-6-63</td>
</tr>
<tr>
<td>7</td>
<td>3/8&quot; Tubing Relief Tee-Tee</td>
<td>WLF-6-60</td>
</tr>
<tr>
<td>8</td>
<td>3/8&quot; Tubing Tee-Outlet</td>
<td>WLF-3-18</td>
</tr>
<tr>
<td>9</td>
<td>Inlet Adaptor</td>
<td>WMS-1-44</td>
</tr>
<tr>
<td>10</td>
<td>Mounting Block Assembly</td>
<td>WMS-1-32</td>
</tr>
<tr>
<td>11</td>
<td>Check Valve Right Side</td>
<td>8584</td>
</tr>
<tr>
<td>12</td>
<td>3/8&quot; Tubing Reg-Left Sol</td>
<td>WLF-6-65</td>
</tr>
<tr>
<td>13</td>
<td>High Pressure Switch</td>
<td>8413</td>
</tr>
<tr>
<td>14</td>
<td>Check Valve Left Side</td>
<td>8583</td>
</tr>
<tr>
<td>15</td>
<td>Primary Regulator for HQ2 Series</td>
<td>See page 5-1</td>
</tr>
<tr>
<td></td>
<td>for HQ2HP Series</td>
<td>See page 5-1</td>
</tr>
<tr>
<td></td>
<td>for HQ2-9 (oxygen) Series</td>
<td>See page 5-1</td>
</tr>
<tr>
<td>16</td>
<td>1/8&quot; x 12&quot; Tubing</td>
<td>WLF-6-18</td>
</tr>
<tr>
<td>17</td>
<td>Block-3 way 3/8&quot; tubing</td>
<td>WLF-6-61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KEY #</th>
<th>DESCRIPTION</th>
<th>PART #</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>3/8&quot; Tubing L. Relief-Tee</td>
<td>WLF-6-64</td>
</tr>
<tr>
<td>19</td>
<td>3/8&quot; Tubing R. Relief-Tee</td>
<td>WLF-6-62</td>
</tr>
<tr>
<td>20</td>
<td>Left Line Regulator Assy for HQ2HP Series</td>
<td>8561</td>
</tr>
<tr>
<td></td>
<td>for HQ2 Series</td>
<td>8563</td>
</tr>
<tr>
<td>21</td>
<td>Three Way Valve</td>
<td>WMV-2-54</td>
</tr>
<tr>
<td>22</td>
<td>Right Line Regulator Assy for HQ2HP Series</td>
<td>8562</td>
</tr>
<tr>
<td></td>
<td>for HQ2 Series</td>
<td>8564</td>
</tr>
<tr>
<td>23</td>
<td>Outlet Block</td>
<td>WMV-2-26</td>
</tr>
<tr>
<td>24</td>
<td>Outlet Nipple</td>
<td>D-20</td>
</tr>
<tr>
<td>25</td>
<td>Outlet Hex Nut</td>
<td>D-7</td>
</tr>
<tr>
<td>26</td>
<td>Outlet Adaptor</td>
<td>D-34</td>
</tr>
<tr>
<td>27</td>
<td>Line Relief Valve for HQ2 &amp; HQ2-9 Series</td>
<td>WMV-8-75</td>
</tr>
<tr>
<td></td>
<td>for HQHP Series</td>
<td>WMV-8-250</td>
</tr>
<tr>
<td>28</td>
<td>Pipe Away Adaptor</td>
<td>WMV-8-7</td>
</tr>
<tr>
<td>29</td>
<td>3/8&quot; Tube x 1/2 NPT Male</td>
<td>WLF-3-15</td>
</tr>
<tr>
<td>30</td>
<td>3/8&quot; Tubing Line Relief-Tee</td>
<td>8341</td>
</tr>
<tr>
<td>31</td>
<td>LineReg-Tee CV assembly</td>
<td>8582</td>
</tr>
<tr>
<td>32</td>
<td>3/8&quot; Tubing Tee-Bulkhead</td>
<td>8321</td>
</tr>
<tr>
<td>33</td>
<td>Right Solenoid Valve Assm 8551R</td>
<td></td>
</tr>
</tbody>
</table>
Western Enterprises
INNOVATOR
AUTOMATIC CHANGEOVER MANIFOLD
HQ2HL Series
Manifold Components

* Bypass kit not on all assemblies.

<table>
<thead>
<tr>
<th>KEY #</th>
<th>DESCRIPTION</th>
<th>PART #</th>
<th>KEY #</th>
<th>DESCRIPTION</th>
<th>PART #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gauge Plate Assembly</td>
<td>8542</td>
<td>19</td>
<td>3/8&quot; Tubing R. Relief-Tee</td>
<td>WLF-6-62</td>
</tr>
<tr>
<td>2</td>
<td>Relief Piping Adaptor</td>
<td>WLF-3-12</td>
<td>20</td>
<td>Left Line Regulator Assy</td>
<td>8563</td>
</tr>
<tr>
<td>3</td>
<td>3/8&quot; Tube Bulkhead</td>
<td>WLF-3-13</td>
<td>21</td>
<td>Three Way Valve</td>
<td>WMV-2-54</td>
</tr>
<tr>
<td>4</td>
<td>3/8&quot; Tube Tee</td>
<td>WLF-3-14</td>
<td>22</td>
<td>Right Line Regulator Assy</td>
<td>8564</td>
</tr>
<tr>
<td>5</td>
<td>Left Solenoid Valve Assem</td>
<td>8552L</td>
<td>23</td>
<td>Outlet Block Assembly</td>
<td>WMC-2-26</td>
</tr>
<tr>
<td>6</td>
<td>3/8&quot; Tubing Right Reg-Sol</td>
<td>WLF-6-63</td>
<td>24</td>
<td>Outlet Nipple</td>
<td>D-20</td>
</tr>
<tr>
<td>7</td>
<td>3/8&quot; Tubing Relief Tee-Tee</td>
<td>WLF-6-60</td>
<td>25</td>
<td>Outlet Hex Nut</td>
<td>D-7</td>
</tr>
<tr>
<td>8</td>
<td>Pipe away adaptor</td>
<td>WMV-8-7</td>
<td>26</td>
<td>Outlet Adaptor</td>
<td>D-34</td>
</tr>
<tr>
<td>9</td>
<td>Inlet Adaptor</td>
<td>WMS-1-44</td>
<td>27</td>
<td>Heater Assembly</td>
<td>8590</td>
</tr>
<tr>
<td>10</td>
<td>Mounting Block Assembly</td>
<td>WMS-1-32</td>
<td>28</td>
<td>Line Relief Valve</td>
<td>HQ2HL-4 Series</td>
</tr>
<tr>
<td>11</td>
<td>Check Valve Right Side</td>
<td>8584</td>
<td>29</td>
<td>3/8&quot; Tube x 1/2 NPT Male</td>
<td>WLF-3-15</td>
</tr>
<tr>
<td>12</td>
<td>3/8&quot; Tubing Left Reg-Sol</td>
<td>WLF-6-65</td>
<td>30</td>
<td>3/8&quot; Tubing Line Relief-Tee</td>
<td>8341</td>
</tr>
<tr>
<td>13</td>
<td>High Pressure Switch</td>
<td>8413</td>
<td>31</td>
<td>Line Reg-Tee CV Assy</td>
<td>8582</td>
</tr>
<tr>
<td>14</td>
<td>Check Valve Left Side</td>
<td>8583</td>
<td>32</td>
<td>3/8&quot; Tubing Tee-Bulkhead</td>
<td>8321</td>
</tr>
<tr>
<td>15</td>
<td>Primary Regulator</td>
<td>8534</td>
<td>33</td>
<td>3/8&quot; Tubing Tee-Outlet</td>
<td>WLF-3-18</td>
</tr>
<tr>
<td>16</td>
<td>1/8&quot; x 12&quot; Tubing</td>
<td>WLF-6-18</td>
<td>34</td>
<td>Right Solenoid Valve Assem.8552R</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Block - 3 way tubing</td>
<td>WLF-6-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>3/8&quot; Tubing L. Relief-Tee</td>
<td>WLF-6-64</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INNOVATOR
AUTOMATIC CHANGEOVER MANIFOLD
HQ2 and HQ2HP Series

Mounting Block Components

<table>
<thead>
<tr>
<th>KEY #</th>
<th>DESCRIPTION</th>
<th>PART #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mounting Block</td>
<td>8112</td>
</tr>
<tr>
<td>2</td>
<td>1/4&quot; Street Elbow</td>
<td>BL-4HP</td>
</tr>
<tr>
<td>3</td>
<td>Adaptor for Primary Regulator</td>
<td>B-71</td>
</tr>
<tr>
<td>4</td>
<td>Low Pressure Switch</td>
<td>WME-4-4</td>
</tr>
<tr>
<td>5</td>
<td>Intermediate Gauge, 400 psi</td>
<td>G-15-400</td>
</tr>
<tr>
<td>6</td>
<td>1/8&quot; Tube x 1/4 NPT Male</td>
<td>WLF-3-8</td>
</tr>
<tr>
<td>7</td>
<td>3/8&quot; Tube x 1/4 NPT Male</td>
<td>WLF-3-5</td>
</tr>
<tr>
<td>8</td>
<td>3/8&quot; Tube x 1/2 NPT Male</td>
<td>WLF-3-15</td>
</tr>
<tr>
<td>9</td>
<td>1/8&quot; NPT to 1/4&quot; NPT Bushing</td>
<td>BB-2-4HP</td>
</tr>
</tbody>
</table>
Western Enterprises

INNOVATOR
AUTOMATIC CHANGEOVER MANIFOLD
HQ2HL Series

Mounting Block Components

Repair Drawing

<table>
<thead>
<tr>
<th>KEY #</th>
<th>DESCRIPTION</th>
<th>PART #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mounting Block</td>
<td>8113</td>
</tr>
<tr>
<td>2</td>
<td>1/8&quot; Tube x 1/8 NPT Male</td>
<td>BL-4HP</td>
</tr>
<tr>
<td>3</td>
<td>Adaptor for Primary Regulator</td>
<td>B-71</td>
</tr>
<tr>
<td>4</td>
<td>Low Pressure Switch</td>
<td>WME-4-4</td>
</tr>
<tr>
<td>5</td>
<td>Intermediate Gauge, 400 psi</td>
<td>G-15-400</td>
</tr>
<tr>
<td>6</td>
<td>1/8&quot; Tube x 1/4 NPT Male</td>
<td>WLF-3-8</td>
</tr>
<tr>
<td>7</td>
<td>3/8&quot; Tube x 1/4 NPT Male</td>
<td>WLF-3-5</td>
</tr>
<tr>
<td>8</td>
<td>1/4&quot; Tube x 1/8 NPT Male 90°</td>
<td>WLF-3-3</td>
</tr>
<tr>
<td>9</td>
<td>3/8&quot; Tube x 1/2 NPT Male</td>
<td>WLF-3-15</td>
</tr>
<tr>
<td>10</td>
<td>1/8&quot; NPT to 1/4&quot; NPT Bushing</td>
<td>BB-2-4HP</td>
</tr>
</tbody>
</table>
### INNOVATOR AUTOMATIC CHANGEOVER MANIFOLD
HQ2, HQ2HL, and HQ2HP Series
and HQ2-9 Series S/N greater than 11348
Primary Regulator Components

<table>
<thead>
<tr>
<th>KEY #</th>
<th>DESCRIPTION</th>
<th>PART #</th>
<th>KEY #</th>
<th>DESCRIPTION</th>
<th>PART #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Retainer O-Ring</td>
<td>RO-012E</td>
<td>14</td>
<td>Washer</td>
<td>RWS-3-28</td>
</tr>
<tr>
<td>2</td>
<td>Spring Retainer</td>
<td>RWS-3-15</td>
<td>15</td>
<td>Bonnet Spring</td>
<td>RWS-7-54</td>
</tr>
<tr>
<td>3</td>
<td>Backup Ring</td>
<td>RWS-5-7</td>
<td>16</td>
<td>Pivot</td>
<td>RWC-2-8P</td>
</tr>
<tr>
<td>4</td>
<td>Small O-Ring</td>
<td>RWS-3-47</td>
<td>17</td>
<td>Adjusting Screw</td>
<td>RWS-3-3</td>
</tr>
<tr>
<td>5</td>
<td>Seal Retainer</td>
<td>RWS-6-4</td>
<td>18</td>
<td>Lock Nut</td>
<td>WMC-6-90</td>
</tr>
<tr>
<td>6</td>
<td>Body Spring</td>
<td></td>
<td>19</td>
<td>1/8&quot; Tube x 1/4 NPT 90°</td>
<td>WLF-3-7</td>
</tr>
<tr>
<td></td>
<td>for HQ2-9 Series</td>
<td>RWS-1-17</td>
<td>20</td>
<td>1/4 NPT Elbow M x F</td>
<td>BL-4-4LP</td>
</tr>
<tr>
<td></td>
<td>for all others</td>
<td>RWS-1-8</td>
<td>21</td>
<td>3/8&quot; Tube x 1/4 NPT 90°</td>
<td>WLF-3-6</td>
</tr>
<tr>
<td>7</td>
<td>Seat/Stem Assembly</td>
<td></td>
<td>22</td>
<td>1/8&quot; Tube x 1/4 NPT Male</td>
<td>WLF-3-8</td>
</tr>
<tr>
<td></td>
<td>for HQ2 &amp; HQ2HP Series</td>
<td>RWS-3-6</td>
<td>23</td>
<td>Inlet Nut</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>for HQ2HL Series</td>
<td>RWS-3-6</td>
<td>24</td>
<td>Inlet Nipple</td>
<td>15-8</td>
</tr>
<tr>
<td></td>
<td>for HQ2-9 Series</td>
<td>RWS-6-3</td>
<td>25</td>
<td>Safety Relief Valve</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Filter</td>
<td>S-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Gasket</td>
<td>RWS-3-70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Large O-Ring</td>
<td>RO-015E</td>
<td>26</td>
<td>Relief Valve Adaptor</td>
<td>8131</td>
</tr>
<tr>
<td>11</td>
<td>Nozzle</td>
<td></td>
<td></td>
<td>* Items included in repair kits (See page 5-1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for HQ2-9 Series</td>
<td>RWS-5-1</td>
<td></td>
<td>** Item 1 (part no. RO-012E) not included with Manifolds after serial number 20799.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for all others</td>
<td>RWS-3-18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Diaphragm Assembly</td>
<td>RWS-3-26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Slip Ring</td>
<td>RWS-3-17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Western Enterprises

**INNOVATOR**

**AUTOMATIC CHANGEOVER MANIFOLD**

HQ2-9 Series S/N up to 11348

#### Primary Regulator Components

<table>
<thead>
<tr>
<th>KEY</th>
<th>DESCRIPTION</th>
<th>PART #</th>
<th>KEY</th>
<th>DESCRIPTION</th>
<th>PART #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>Cartridge Assembly</td>
<td>RWD-2-19</td>
<td>9</td>
<td>1/8&quot; Tube x 1/4 NPT Male</td>
<td>WLF-3-8</td>
</tr>
<tr>
<td>2*</td>
<td>Diaphragm Assembly</td>
<td>RWS-3-26</td>
<td>10</td>
<td>Inlet Nut</td>
<td>92</td>
</tr>
<tr>
<td>3*</td>
<td>Slip Ring</td>
<td>RWS-3-17</td>
<td>11</td>
<td>Inlet Nipple</td>
<td>15-8</td>
</tr>
<tr>
<td>4</td>
<td>Washer</td>
<td>RWS-3-28</td>
<td>12</td>
<td>1/8&quot; Tube x 1/4 NPT 90°</td>
<td>WLF-3-7</td>
</tr>
<tr>
<td>5</td>
<td>Bonnet Spring</td>
<td>RWS-1-12</td>
<td>13</td>
<td>1/4 NPT Elbow M x F</td>
<td>BL-4-4LP</td>
</tr>
<tr>
<td>6</td>
<td>Pivot</td>
<td>RWC-2-8P</td>
<td>14</td>
<td>3/8&quot; Tube x 1/4 NPT 90°</td>
<td>WLF-3-6</td>
</tr>
<tr>
<td>7</td>
<td>Adjusting Screw</td>
<td>RWS-3-3</td>
<td>15</td>
<td>Safety Relief Valve</td>
<td>8533</td>
</tr>
<tr>
<td>8</td>
<td>Acorn Nut</td>
<td>RWS-3-1</td>
<td>16</td>
<td>Relief Valve Adaptor</td>
<td>8131</td>
</tr>
</tbody>
</table>

*Item included in repair kits*

#### Repair Kit

Repair Kit for HQ2-9 Series RK-1023
Western Enterprises

INNOVATOR
AUTOMATIC CHANGEOVER MANIFOLD
HQ2, HQ2HL & HQ2HP Series

Repair Drawing
Right Line Regulator Components

KEY # | DESCRIPTION | PART # |
--- | --- | --- |
1 | Line Regulator for HQ2HP Series | 8430 |
| for HQ2 & HQ2HL Series | 8431 |
2 | 3/8" Tube x 1/2 NPT Elbow | WLF-3-19 |
3 | 3/8" Tube End x 1/2 NPT Adapter | WLF-3-12 |

Repair Kit for Line Regulator Internal Parts (Components not shown) | RK-1100 |
INNOVATOR AUTOMATIC CHANGEOVER MANIFOLD
HQ2, HQ2HL & HQ2HP Series

Left Line Regulator Components

**Repair Drawing**

**KEY #** | **DESCRIPTION** | **PART #**
--- | --- | ---
1 | Line Regulator for HQ2HP Series | 8430
   | for HQ2 & HQ2HL Series | 8431
2 | 3/8" Tube x 1/2 NPT Elbow | WLF-3-19
3 | 3/8" Tube End x 1/2 NPT Adapter | WLF-3-12

Repair Kit for Line Regulator Internal Parts
(Components not shown)

RK-1100
### Western Enterprises

**Repair Drawing**

**INNOVATOR**

**AUTOMATIC CHANGEOVER MANIFOLD**

HQ2 Series

**Check Valve Components**

---

<table>
<thead>
<tr>
<th>KEY #</th>
<th>DESCRIPTION</th>
<th>PART #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>Poppet</td>
<td>WMV-1-5</td>
</tr>
<tr>
<td>2*</td>
<td>Spring</td>
<td>WMV-1-6</td>
</tr>
<tr>
<td>3*</td>
<td>Washer</td>
<td>WMV-1-7</td>
</tr>
<tr>
<td>4</td>
<td>Cap</td>
<td>WMV-1-8</td>
</tr>
</tbody>
</table>

* Item included in repair kit

Repair Kit for HQ2, HQ2HL, & HQ2HP Series  
RK-1041
## Western Enterprises

**INNOVATOR**  
**AUTOMATIC CHANGEOVER MANIFOLD**  
HQ2 Series

**Repair Drawing**  
**Gauge Plate Components**

### KEY #  
**DESCRIPTION**  
**PART #**

1. 5" x 9" Plate  
   8155
2. 1/8" Tube x 1/4 NPT Female  
   WLF-3-4
3. Line Pressure Gauge  
   for HQ2 & HQ2HL Series, 100 psi  
   WMG-3-3  
   for HQ2HP Series, 400 psi  
   WMG-3-4
4. Cylinder Contents Gauge  
   for HQ2 & HQ2HP Series, 4000 psi  
   WMG-3-12  
   for HQ2HL Series, 2000 psi  
   WMG-3-8

---

**FRONT VIEW**

**BOTTOM VIEW**
### Repair Drawing

#### Western Enterprises

**INNOVATOR**
**AUTOMATIC CHANGEOVER MANIFOLD**
**HQ2, HQ2HL, & HQ2HP Series**
**Power Supply Components**
(Without CSA Certification)

#### Repair Drawing

<table>
<thead>
<tr>
<th>KEY #</th>
<th>DESCRIPTION</th>
<th>PART #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B Size Valve</td>
<td>205</td>
</tr>
<tr>
<td>2</td>
<td>3/8&quot; Tube x 1/2 NPT Male</td>
<td>WLF-3-15</td>
</tr>
<tr>
<td>3</td>
<td>Pipe Away Adaptor</td>
<td>WMV-8-7</td>
</tr>
<tr>
<td>4</td>
<td>3/16&quot; Dia. x 1/4&quot; Rivet</td>
<td>WMC-6-16</td>
</tr>
<tr>
<td></td>
<td>Relief Valve</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HQ2, HQ2-9 and HQ2HL Series</td>
<td>WMV-8-75</td>
</tr>
<tr>
<td></td>
<td>HQ2HP Series</td>
<td>WMC-8-250</td>
</tr>
<tr>
<td>5</td>
<td>1/8&quot; Tube x 1/8 NPT Male</td>
<td>WLF-3-11</td>
</tr>
<tr>
<td>6</td>
<td>3/8&quot; Tube x 1/4 NPT Tee</td>
<td>WLF-3-18</td>
</tr>
<tr>
<td>7</td>
<td>Outlet Block</td>
<td>WMC-2-26</td>
</tr>
</tbody>
</table>