Operating & Maintenance Manual
Alert-2 Microprocessor Based Digital Alarm System v6.1

Andersen Medical Gas
12 Place Lafitte
Madisonville, LA 70447
http://www.TheMedicalGas.com
1-866-288-3783
Contents

User Responsibility
5

Introduction
5 - 6

Features

- Description of the Alarm
- Shipment Details
- The Alarm Back Box
- The Frame/Module Assembly
- Description of the Modules

Description of the Alarm

- Common to all Alarms
 - System Power Supply
 - Annunciator Module
 - Blank Module
- Area Alarm
 - Area Display Module
 - 2 in 1 Display Module
 - Compact Display Module
 - Sensor Module
- Master Alarm
 - Master/Nema 4 Status Module
 - Computer Interface Module

Installation Guide
10 - 11

- The Alarm Back Box
 - For Local Sensor Only
 - Standing Pressure Test
- Frame/Module Assembly
- Sensor
 - Local
 - Remote

Wiring
12 - 14

- System Power Supply
- Annunciator Module
- Sensor Module
 - Local
 - Remote
Contents

Area Display Module
2 in 1 Display Module
Compact Display Module
Master/NEMA 4 Status Module
Computer Interface Module
Closing the Frame Module Assembly

Annunciator Module 14
 Noise Level Control
 Control of Remote Alarm Buzzer

Steps to Re-Calibrate the Sensor from Area Module v4.0 15

Area, 2 in 1, Compact Display Module 15 - 19
 PSI/kPa/ BAR selection
 Inch Hg/kPa/BAR selections
 Common Settings for Pressure and Vacuum
 Setting Factory Default
 Setting Gas Identification Switches
 Chart of Gas Specific Settings of Dip-Switches

Master/NEMA 4 Status Module 19 - 21
 Repeat Alarm
 Signal Input Selection
 Maintenance Mode

Troubleshooting Guide 22 - 24

Error Code Messages on the Display Module 24

Model Numbers 25 - 28
 Area Alarm
 Master Alarm
 Compact Alarm
 NEMA 4 Alarm
 Compact Master Combination Alarm
 2 in 1 Area Alarm

Spare Part Numbers 29 - 31
Contents

Dimensions 32 - 37

- Area Alarm
- Master Alarm
- Compact Alarm
- Compact Master Alarm Combination
- 2 in 1 Alarm
- NEMA 4

Appendix A - Wiring Diagram: Auto-Switching Power Supply 38

Appendix B - Wiring Diagram: Annunciator 39

Appendix C - Wiring Diagram: Automatic Voice/Pager Dialing System 40

Appendix D - Wiring Diagram: Area Display Module (Local Sensor) 41

Appendix E - Wiring Diagram: Area Display Module (Remote Sensor) 42

Appendix F - Wiring Diagram: 2 in 1 Display Module 43

Appendix G - Wiring Diagram: Compact Module 44

Appendix H - Wiring Diagram: Area Module to Master Module 45

Appendix I - Wiring Diagram: 2 in 1 Module to Master Module 46

Appendix J - Wiring Diagram: Abnormal Condition 47

Appendix K - Wiring Diagram: Area Slave 48

Appendix L - Wiring Diagram: Master/NEMA 4 Module 49

Appendix M - Wiring Diagram: Pressure Switch Connection to a Master Alarm 50

Appendix N - Wiring Diagram: Computer Interface Module 51

Appendix O - Wiring Diagram: Master to Slave Module 52

Appendix P - Technical Specification 53

Notes 54 - 55
User Responsibility

The information contained in this Installation and Operation Maintenance Manual, pertains only to the ALERT-2 microprocessor based digital alarm. This product will perform to conformity with the descriptions contained in this manual, when assembled, operated, maintained and serviced in accordance with the installation instructions provided.

The alarm must be checked periodically. Parts that are broken, missing, worn, distorted or contaminated, must be replaced immediately. Should such repair or replacement become necessary, please contact Amico Corporation or their distributors.

All alarms should not be repaired, or altered without prior written or verbal approval of Amico Corporation or its distributors. Failure to comply will void all warranty on the alarm.

Statements in this manual preceded by the words WARNING, CAUTION, DANGER and NOTE are of special significance. Please read these sections carefully.

NOTE: Amico strongly recommends that alarms be checked annually by qualified staff.

- **WARNING:** denotes steps which can prevent injury.
- **CAUTION:** denotes steps which can prevent damage to equipment.
- **DANGER:** denotes steps which can prevent electrical shock to equipment or to prevent serious injury and/or death.

Introduction

The AMICO Medical Gas Alarm System (ALERT-2) incorporates the latest microprocessor technology for alarm and surveillance systems. The alarm has been designed to provide user flexibility and reliability. This manual will enable the customer to install, use and maintain the alarm properly.

All Gases or Vacuum are displayed with large Red LED’s for clear visibility. To facilitate the monitoring function by hospital personnel, a trend bar is provided to show the direction of the gas/vacuum pressure. Under normal operation, the gas trend indicator will be in the GREEN - OK position. If the gas pressure approaches alarm condition, the trend indicator will display a YELLOW - Caution indicator. If an alarm condition occurs, a RED-Alarm indicator will be displayed and the buzzer will sound.

There are two buttons located on the front face of the Annunciator module. They are the “TEST” and “ALARM MUTE” buttons. The function of the “Test” button is to verify that the buzzer and all the alarm LED’s are in normal working condition. The function of the “Alarm Mute” button is to silence an alarm that has occurred.

A master status module monitors source equipment such as: Oxygen, Nitrous Oxide, Air compressors, Vacuum pumps, Air dryers, high/low pressure switches, etc. This module can be connected to a “Building Management System”, with a piggy-back computer interface board, that attaches to the master module.
The Alert-2 microprocessor based digital alarm system complies with NFPA-99.

The Alert-2 microprocessor based digital alarm system is UL Listed to U.S. and Canadian safety standards.

FEATURES

- Individual Microprocessor on each display, sensor and master module.
- Gas specific sensors can be mounted locally or remote, up to 2,500 feet, [750 m] utilizing 22 gauge twisted pair (shielded cable should be used).
- DISS gas specific sensor housed in a tamper proof enclosure. The Sensor Module is housed in an anodized aluminum and nickle-plated brass enclosure to act as an interference barrier.
- The Sensor Module is the smallest computer-calibrated temperature-compensated sensor in the industry.
- True digital LED display and trend indicator for each service monitored.
- Illuminated LED display that is visible at an angle and in dim lighting conditions.
- PSI, kPa or BAR display (switch selected).
- Self diagnostic circuitry with error display for problem identification.
- Highly accurate Solid State Pressure piezo-resistive transducer.
- Adjustable repeat alarm (1 to 60 minutes/or off) for the Area, 2 in 1 Alarm and Compact Alarm.
- Adjustable repeat alarm (1, 12, 24 hours/or off) for the Master Alarm.
- Dry contacts for remote monitoring of High and Low alarm status on the Area, 2 in 1 and Compact Alarm display module.
- Modules are factory mounted on a hinged frame assembly for ease of installation and maintenance.
- Field programmable push buttons for adjustment of HI and LOW set-points on display module.
- Area alarms available in 1 to 6 display modules.
- Compact alarms available in 1 to 12 display modules.
- Master alarms available in 10 to 60 points.
- 2 in 1 alarms available in 1 to 6 display modules with 5 to 30 master points.
- Area, 2 in 1, and Compact Modules can be intermixed with Master Modules to create a combination alarm.
- Built-In relay for remote annunciator applications.
- Area, 2 in 1 and Compact Module indication for calibration (flashing bar graph).
Description of the Alarm

SHIPMENT DETAILS

When you receive an ALERT-2 series alarm from Amico Corporation, the package will consist of two main sections; the Alarm Back Box and the Frame/Module Assembly. The Frame/Module assembly will be pre-configured, with the appropriate display modules, based upon the customer’s specifications.

THE ALARM BACK BOX

The Alarm Back Box contains the auto-switchable System Power Supply with an ON/OFF switch, a built-in fuse and terminal blocks (115 VAC, or 220 VAC). The back box also incorporates the pipe stubs for applications that require locally (in box) mounted sensors.

THE FRAME/MODULE ASSEMBLY

The Frame/Module Assembly consists of the frame and all the modules that are pre-assembled to the customers specification. The hinged frame is designed to swing down from the back box to facilitate installation and servicing of the alarm. This design will reduce installation time and eliminate the risk of improper installation since all the modules are connected and tested at the factory.

Description of the Modules

The ALERT-2 alarm is divided into 4 or 7 main modules:

COMMON TO ALL ALARMS

1. SYSTEM POWER SUPPLY

The System Power Supply has been pre-installed into the back box assembly. The System Power Supply converts the AC voltage supply to the alarm into two voltages: 5 VDC (regulated) required by the microprocessor hardware and 15 VDC (unregulated) required by the buzzer and the LED’s. This unit also contains the main ON/OFF power switch, the transformer, the heat sink, the main fuse and fuse cover, the rectifying circuitry, the terminal blocks and the low voltage DC power cable for connecting this unit to the annunciator module. The System Power Supply can be easily removed and reinstalled by unscrewing it from the back box.
Description of the Alarm

2. ANNUNCIATOR MODULE

The Annunciator Module contains the buzzer, a “Power On” LED, the “TEST” and the “ALARM MUTE” buttons. The function of the “TEST” button is to verify that the buzzer and all the LED’s are in working condition. An alarm will be heard when this button is pushed and all the LED’s will light up. When the button is released, the alarm will silence. The “ALARM MUTE” button is used to silence an alarm that has occurred. This module also contains a fail-safe relay that de-energizes when the buzzer is activated. This relay can be used with the “Amico remote buzzer”, for applications requiring a remote audible alarm (see Appendix B), for connection to another Amico Alarm or a Building Management System.

3. BLANK MODULE

The Blank Module is used as a filler board for future provisions of the alarm.

AREA ALARM

4. AREA DISPLAY MODULE

The Area Display Module provides a digital display of the actual pressure/vacuum of a gas being monitored. In addition a gas trend indicator bar with HIGH and LOW alarms are displayed. The trend bar has three coloured LED’s: Green for Normal condition, YELLOW for Caution condition, and RED for high and low Alarm conditions.

Each display module contains a gas specific colour coded label (USA or ISO colours are available). A space is also provided, at the base of the module, to identify the location that the display module monitors. The display module is field adjustable for pressure/vacuum settings, repeat alarm, and units of measure. Whenever the module is in calibration mode, the bargraph is flashing, indicating the calibration mode. Dry contacts for high and low alarms are available for remote monitoring of each module.

5. 2 IN 1 DISPLAY MODULE

The 2 in 1 Display Module provides a digital display of the actual pressure/vacuum of the gas being monitored. In addition, a gas trend indicator bar with High and Low alarms are displayed. This module has two coloured LEDs - Green for Normal conditions and Red for High and Low alarm conditions. It is field adjustable for pressure/vacuum settings, repeat alarms, and units of measure. Dry contacts for high and low alarms are available for remote monitoring of each module.

Each module will continuously monitor up to 5 signals from source equipment or pressure switches. If any of the signals being monitored go into an alarm condition, a Red LED will illuminate and the audible alarm will sound.

PLEASE NOTE: Contacts located on back of module are Dry Contacts only. DO NOT apply any voltage.
6. COMPACT DISPLAY MODULE

The Compact Display Module shall have 2 displays in 1 board. The Compact Module provides a digital display of the actual pressure/vacuum of a gas being monitored. In addition a gas trend indicator bar with High and LOW alarms are displayed. The trend bar as two colored LED’s: GREEN for Normal and RED for High and Low condition.

Each display module contains a gas specific colour coded label (USA or ISO colours are available). The Display Module is field adjustable for pressure/vacuum settings, repeat alarm, and unit of measure. Dry contacts for high and low alarms are available for remote monitoring of each module.

7. SENSOR MODULE

The Sensor Module contains the transducer which converts the pressure/vacuum pressure source into a digital signal that is displayed on the Display Module. The sensor module shall be housed in an anodized aluminum and nickel-plated brass enclosure to act as an interference barrier also it is temperature compensated. Each sensor is clearly labeled and colour coded for the gas or vacuum being monitored. The sensor module contains a gas specific DISS fitting to ensure correct connection of the proper sensor to the respective gas. Each sensor has been factory calibrated by computer for the specific gas shown on the sensor housing. If it is not connected to the appropriate gas display module, an error message (EO2) will be displayed.

MASTER ALARM

8. MASTER/NEMA 4 STATUS MODULE

Each Master Status Module will continuously monitor up to 10 signals from source equipment and pressure switches. If any of the signals being monitored go into an alarm condition, a Red LED will illuminate and the audible alarm will sound. The module has a slow and a rapid flashing LED rate. The last alarm condition always flashes at a rapid rate, while the previously acknowledged alarms always flash at a slow rate.

PLEASE NOTE: Contacts located on back of module are Dry Contacts only. DO NOT apply any voltage.

For Annual Test
- Reset power to make sure all LED’s light up
- Push and hold the ‘Test’ button to light up all LED’s and the audible alarm
9. COMPUTER INTERFACE MODULE

The Computer Interface Module is a piggyback board that fits on top of the master status module. This module plugs into the status module via a connector, located at the bottom end of the status module. There are three mounting screws provided to secure this module to the status module. This module provides dry contacts for interface to a "Building Management System". The module is "Fail-Safe", closed circuit monitoring.

PLEASE NOTE: The computer interface module is not compatible with the 2 in 1 board.

Installation

THE ALARM BOX

Install the back-box to the studs of the wall at the desired height. Ensure that the box is securely in place. The mounting brackets are adjustable to suit the thickness of the wall. MAKE SURE the box is parallel, squared and flush with the finished wall surface, to ensure that the frame assembly will fit properly.

FOR LOCAL SENSOR ONLY

If the sensors are to be mounted locally (inside the back box), the pipe stubs must be connected to the pipeline. Using silver-brazing techniques, connect each pipe stub to it's appropriate gas or vacuum while ensuring that the bottom of the pipe stub is wrapped with a damp cloth. BE CAREFUL not to damage the DISS check-valve by overheating the lower portion of the copper pipe. When the brazing of pipe stubs has been completed, the system can be pressure tested.

STANDING PRESSURE TEST

Perform a standing pressure test on the piping system as per NFPA-99 "Health Care Facilities". Inspect all joints for leaks and make certain each gas is piped to a correspondingly labelled gas service.

FRAME/MODULE ASSEMBLY

Step #1 Remove the frame/module assembly from its protective box.

Step #2 Remove screws from the frame section (6 screws).

Step #3 Attach the flat head screws (provided with frame in plastic bag) to the hinge. This will line up with holes on the box.

Step #4 Attach the frame wire with 2 dome head screws (provided with frame in plastic bag).

Step #5 Close the frame panel and tighten the screws on the frame plate.

Step #6 Carefully place the front frame over the fastened plate. Refasten the screws that were removed in Step #2.
Installation

CAUTION: The microprocessor circuitry on the ALERT-2 alarm contains sophisticated integrated semiconductors. If it becomes necessary to remove a module, PLEASE hold the boards by the edges. **DO NOT TOUCH** any of the components on the board. Static discharge can cause the modules to malfunction, or become damaged.

SENSOR

LOCAL (Inside the Back Box)

1. Locate the gas specific sensor module to be installed.

2. In the back box, there are colour coded gas labels located under the DISS Demand check valves. Each label identifies where each sensor module is to be placed.

3. The sensor module contains a gas specific DISS fitting. Push the sensor module hex-nut and nipple adapter up into the demand check-valve. With a wrench, tighten the nut so that it makes a good seal.

NOTE: Pressure on sensors are not to exceed **250 psi** for Pressure sensors and **30”** for vacuum sensors.

The new style sensors can read pressure up to:
- Mid Pressure 99 Psi
- Hi Pressure 249 Psi
- Vacuum 30” Hg

REMOTE (Outside the Back Box)

1. Connect a Tee (supplied by others) to the pipeline with a 1/4” NPT female connection that will accept the DISS Demand check-valve.

2. Locate the gas specific sensor module to be installed.

3. Thread the DISS Demand check-valve into the correct gas pipe line.

4. The sensor module contains a gas specific DISS fitting. Push the sensor module hex-nut and nipple adapter up into the demand check-valve. With a wrench, tighten the nut so that it makes a good seal.
Wiring

SYSTEM POWER SUPPLY

TURN OFF THE POWER SWITCH BEFORE CHANGING ANY MODULES AND/OR DISCONNECTING ANY CABLES, OR ELSE THE FUSE WILL BLOW TO PROTECT THE CIRCUITRY.

1. Ensure that the ON/OFF switch is in the OFF position.
2. Through the top left side of the back box, bring in the AC power wires. Knockouts are provided for making conduit connections to the box. All wiring is to be installed according to local and national codes.
3. Connect the AC power to the terminal blocks as shown in the wiring diagram in Appendix A and as specified in the technical specification in Appendix P.

ANNUNCIATOR MODULE

1. The Annunciator Module has a female receptacle located at the top right side of the board (J1).
2. Connect the DC power cable from the System Power Supply into the receptacle connection located on the annunciator module. The connector is keyed and can only be plugged in one way, (Appendix B).

SENSOR MODULE

LOCAL (Inside the Back Box)

1. The sensor module is provided with a 6" - 8" [0.1 m - 0.2 m] twisted pair of wires. One wire is Red (positive) and the other wire is Black (negative). Connect the wires to the display module as shown in Appendix D. Take the Red wire from the sensor and attach it to terminal “Sensor +” on the display module. Take the Black wire from the sensor and attach it to terminal “Sensor -“. The terminal block on the display module is clearly marked for proper connection of the sensor wires.
2. Repeat the above procedures with the remaining sensor modules.

REMOTE (Outside the Back Box)

1. The sensor module is provided with a 6" - 8" [0.1 m - 0.2m] twisted pair of wires. Connect the wires to a junction box (not supplied) located near the sensor as per the wiring diagram in Appendix E.
2. Connect a shielded twisted pair cable from the junction box to the back box assembly. Knockouts are provided throughout the alarm back box. Up to 2,500 feet [750m] of 22 Gauge, shielded twisted pair cable can be used.
3. Connect the Red wire from the cable to the terminal on the display module marked “Sensor +”. Connect the black wire to terminal “Sensor -“ (see Appendix D).

4. Repeat the above procedures with the remaining sensor modules using the wiring diagram in Appendix E.

PLEASE NOTE: When remote sensors are used, a shielded or twisted pair cable is required (BELDEN # 8451 or equivalent, supplied by others). Ensure that the proper gas sensor module is connected to its corresponding area display module, otherwise an error message (E02) will be displayed on the Area Display module.

AREA DISPLAY MODULE

1. If the dry contacts for High and Low alarm are to be used for remote monitoring, connect the wires to the appropriate terminals, Com (Common), NO (Normally Open) or NC (Normally Closed), using the diagram in Appendix H.

2. See Appendix P for contact rating.

2 IN 1 DISPLAY MODULE

1. If the dry contacts for High and Low alarms are to be used for remote monitoring, connect the wires to the appropriate terminals, COM (Common), NC (Normally Closed), or NO (Normally Open), using the diagram in Appendix F.

2. Pull the remote signal wires into the alarm panel. Make the connections to the terminal blocks located on the side of the status module. The wiring fail-safe normally closed (NC) connections from the source equipment. The signal level is 5 VDC. Please refer to Appendix I.

3. ENSURE that the unused terminals are jumpered. If this is not done, the terminals that have not been jumpered will go into alarm.

COMPACT DISPLAY MODULE

1. If the dry contacts for high and low are to be used for remote monitoring, connect the wires to the appropriate terminals, Com (Common), NO (Normally Open), NC (Normally Closed), using the diagram in Appendix G.

2. See Appendix P for contact rating.

MASTER/NEMA 4 STATUS MODULE

1. Pull the remote signal wires into the alarm panel. Make the connections to the terminal blocks located on the side of the status module. The wiring is fail-safe normally closed (NC) connections from the source equipment. The signal level is 5 VDC.

2. Make the appropriate wiring connections as per the wiring diagram in APPENDIX M and N.

3. For Version 3 and Version 4 ENSURE that the unused terminals in the master module are jumpered. If this is not done, the terminals that have not been jumpered will go into alarm.

 For Version 4, turn off switches for any unused points (SW2).
Wiring

COMPUTER INTERFACE MODULE

1. Pull the remote signal wires from the “Building management system” into the alarm panel. Make the connections to the terminal blocks located on the side of the module. The wiring is fail-safe normally open, held closed, dry contacts to the monitoring equipment.

2. Make the appropriate wiring connections as per wiring diagram in Appendix N.

CLOSING THE FRAME/MODULE ASSEMBLY

1. Swing up the frame assembly, ensuring that the stopper wires are folded into the back box.

2. Screw in the frame module to the top of the back box assembly by using the screws provided with the frame/module assembly. The alarm is now ready for use!

Annunciator Module

NOISE LEVEL CONTROL

Factory Default: 90 Decibels

To decrease noise level:

1. Locate jumper at J5. Move jumper to:
 LVL1 = 90 dBa.
 LVL2 = 80 dBa.
 LVL3 = 70 dBa.

CONTROL OF REMOTE ALARM BUZZER

Factory Default: Normal Condition

To silence remote alarm buzzer, when silencing the annunciator module:

1. Locate jumper at J6. Move jumper to:
 NORM = Remote alarm buzzer will silence when annunciator module is silenced.
 ALRM = Remote alarm will not silence when annunciator module is silenced. The buzzer will only silence when alarm condition has been cleared. Please refer to Appendix B.
Steps to Re-Calibrate the Sensor from Area Module v4.0

1. Turn on Alarm
2. Set switches #8 & #10 the OFF position
3. Set switches #5 & #6 the ON position
4. The display will show the current reading of the pressure
5. Adjust the calibration, using the “UP” and “DOWN” push buttons, to the desired value.
6. Set switches #5 & #6 the OFF position
7. Turn on #10 if Aims is connected (do not turn on #8)

When you have completed step #7, the display module will automatically go into a “RESET” mode. This will store the data that you had entered.

Area, 2 in 1, Compact Display Module

A dip-switch is located on the back of the display module which is used to identify the gas of the display module. The dip-switch contains ten switch settings.

PRESSURE ONLY
Factory Default:
High = 60 Psi, Low = 40 Psi
Repeat time = 30 min.

HIGH PRESSURE/NITROGEN
Factory Default:
High = 195 Psi, Low = 140 Psi
Repeat time = 30 min.

During programming, the “Trend Bar” will Flash!

1. Set switch #6, #7 and #8 to the ON position.
2. The LED will display (HI-), followed by the current set point. Indicating the system is ready to accept a new High set point. Adjust set point, using the “UP” and “DOWN” push buttons, to the desired value.
3. Set switch #7 to the OFF position.
4. The LED will display (LO-), followed by the current set point. Indicating the system is ready to accept a new Low set point. Adjust set point, using the “UP” and “DOWN” push buttons, to the desired value.
5. Set switch #8 to the OFF position.
6. The LED will display (I-I-I-I-I-I-I-I-I-I-), followed by the current set point. Indicating the system is ready to accept a new Repeat time set point. Adjust set point using the “UP” and “DOWN” push buttons, to the desired value. [(Display dd=Disabled) Range from 1 to 60 Minutes]
7. Set switch #6 to the OFF position.
When you have completed step #7, the display module will automatically go into a “RESET” mode. This will store the data that you had entered.

PSI / kPa / BAR selection

Factory Default - PSI

For PSI mode, set the switch #4 to the ON position. The LED PSI indicator located next to the GAS pressure reading will illuminate.

For kPa mode, set the switch #4 to the OFF position and switch #9 to the ON position. The LED kPa indicator located next to the GAS pressure reading will illuminate.

For BAR set the switch #4 to the OFF and the switch #9 to the OFF position. The LED kPa indicator located next to the GAS pressure reading will illuminate. (There is no separate indicator for BAR).

VACUUM ONLY

Vacuum alarm set-point adjustment

Factory Default:

- High = 30"Hg, Low = 12"Hg
- Repeat time = 30 min.

During programming, the “Trend Bar” will Flash!

1. Set switch #6, #7 and #8 to the ON position.

2. The LED will display (HI-HI-HI-HI-HI-), followed by the current set point. Indicating the system is ready to accept a new High set point. Do not adjust this set point since the High set point is not used.

3. Set switch #7 to the OFF position.

4. The LED will display (LO-LO-LO-LO-LO-), followed by the current set point. Indicating the system is ready to accept a new Low set point. Adjust set point, using the “UP” and “DOWN” push buttons, to the desired value.

5. Set switch #8 to the OFF position.

6. The LED will display (I-I-I-I-I-I-I-I-I-I-), followed by the current set point. Indicating the system is ready to accept a new Repeat time set point. Adjust set point using the “UP” and “DOWN” push buttons, to the desired value. [(Display dd=Disabled) Range from 1 to 60 Minutes]

7. Set switch #6 to the OFF position.

When you have completed step #7, the display module will automatically go into a “RESET” mode. This will store the data that you had entered.
InchHg / KPA / BAR selections

Factory Default - InchHg

For InchHg mode, set the switch #4 to the ON position. The LED indicating InHg located next to the VACUUM source reading will illuminate.

For KPA mode, set the switch #4 to the OFF position and the switch #9 to the ON position. The LED indicating KPA located next to the VACUUM source reading will illuminate.

For BAR mode, the KPA indicating source must be changed to BAR by use of a label. Set the switch #4 to the OFF and the switch #9 to the OFF position. The LED indicating BAR located next to the VACUUM source reading will illuminate.

COMMON SETTINGS FOR PRESSURE AND VACUUM

- Repeat Alarm Enable/Disable
 - Factory Default - Disable
 - Disable
 - Enable

 Set switch #5 to the OFF position to disable the repeat alarm.

 NOTE: When the repeat alarm function is disabled, the alarm will not repeat.

 Enable Mode: (Factory Default 30 min, when enabled).

 Set switch #5 to the ON position.

 PLEASE NOTE: The Module with the Lowest set Repeat Time is the one that controls the Repeat Time. For example if one Module is set for 5min and one for 30min and both are Repeat Alarm enabled, the Alarm will now Repeat every 5min.
SETTING FACTORY DEFAULT

To quickly reset the module (Pressure or Vacuum) to the factory default settings as follows:

- Pressure: High set-point 60 Psi, Low set-point 40 Psi.
- Nitrogen & HP Air: High set-point 195 Psi, Low set-point 140 Psi.
- Vacuum: Low set-point 12 inchHg.
- No Repeat alarm, but set for 30 min..

1. Set switch #8 to the ON position.
2. Turn the power off (wait 5 seconds) then back on.
3. Set switch #8 to the OFF position.

The module is now in the default mode.

SETTING GAS IDENTIFICATION SWITCHES

PLEASE NOTE: DO NOT tamper with switches #1, #2 and #3 on the dip-switch. Tampering with these positions will result in an error message being displayed (EO2) and will disable the electrical interlock from the gas specific sensor.

Changes to these switches should only be done by properly trained personnel, when circuit boards have to be changed in the field.

Switches # 1, #2 and #3 are used for the gas identification of the display module. These will be set at the factory and should not be tampered with in the field.
CHART OF GAS SPECIFIC SETTINGS OF DIP-SWITCHES

Oxygen
#1 - off
#2 - off
#3 - on

Vacuum
#1 - off
#2 - on
#3 - off

Medical Air
#1 - on
#2 - off
#3 - on

Nitrous Oxide
#1 - off
#2 - off
#3 - off

Nitrogen
#1 - off
#2 - off
#3 - off

Carbon Dioxide
#1 - on
#2 - on
#3 - on

WAGD
#1 - on
#2 - off
#3 - off

HP Air
#1 - off
#2 - off
#3 - off

Master/NEMA 4 Status Module

REPEAT ALARM

Factory Default - Disable

Version

<table>
<thead>
<tr>
<th>Disable</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable</td>
<td>5 min</td>
<td>1 HR</td>
</tr>
<tr>
<td>Enable</td>
<td>15 min</td>
<td>12 HR</td>
</tr>
<tr>
<td>Enable</td>
<td>30 min</td>
<td>24 HR</td>
</tr>
</tbody>
</table>

Version

<table>
<thead>
<tr>
<th>OFF</th>
<th>OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5 MIN</th>
<th>1 HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15MIN</th>
<th>12 HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>30MIN</th>
<th>24HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

PLEASE NOTE: The above repeat alarm only applies to the Master/NEMA 4 alarm, for the 2 in 1 please refer to page 17.
SIGNAL INPUT SELECTION

Factory Default - Normally Closed as per NFPA 99.

The Amico alarm can detect field devices in the Normally Open or Normally Closed position.

For Normally Closed Set switch #3 to the OFF position.

For Normally Open Set switch #3 to the ON position.

PLEASE NOTE: The above signal input selection, applies to both alarm systems - the Master/NEMA 4 and the 2 in 1.

MAINTENANCE MODE

Factory Default - Disabled

The Maintenance (or Latch) mode is used to allow hospital personnel to identify loose wiring or faulty source equipment. By putting the master module into “Latch” mode, any alarms received; even transient ones, will be latched-on so that maintenance personnel can identify the source of the problem. The Maintenance mode will disable the automatic reset, if a fault condition has been rectified. The alarm indicator can only be turned-off by pushing the “alarm silence” button on the annunciator module twice. The “Maintenance” LED will illuminate whenever the maintenance mode is enabled.

Disable Set switch #4 to the OFF position.

Enable Set switch #4 to the ON position.
Master/NEMA 4 Status Module

THE MASTER MODULE SWITCH

MASTERBOARD 10-CHANNEL ACTIVATION DIP-SWITCHES

The 10 Channel dip-switch is responsible for activating and deactivating each individual corresponding channel on the Masterboard.

NOTE:

Version 3: Jumper any unused points on the Master module

Version 4: Jumper any unused points on the Master module. Turn OFF dip-switches for any unused points (Location SW-2)

THE 2 IN 1 SWITCH

ALL CHANNELS ACTIVATED

ALL CHANNELS DEACTIVATED
<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. An error code appears on one or more display modules.</td>
<td>The Microprocessor detected a fault and has shutdown.</td>
<td>1. Turn power switch to OFF position. Wait for at least 5 seconds before turning on the power. The program will reset itself.</td>
</tr>
<tr>
<td></td>
<td>Faulty wire connection between the sensor and display module.</td>
<td>1. Check error codes at the end of this section.</td>
</tr>
<tr>
<td>2. No power on the alarm. (No LED's illuminated)</td>
<td>AC power not available.</td>
<td>1. Ensure that the ON/OFF switch on the power supply module is turned ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. AC wiring not connected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Check the building electrical breaker to ensure that the power is ON.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Check the voltage at the terminal block above the transformer. Ensure that 115 VAC or 220 VAC is being supplied.</td>
</tr>
<tr>
<td></td>
<td>Fuse is blown.</td>
<td>1. Check the fuse. The fuse is located on the upper-right corner of the system power supply. Replace the fuse if it is defective. See Appendix A and P.</td>
</tr>
<tr>
<td></td>
<td>DC power plug not connected to the annunciator module.</td>
<td>1. Ensure that the DC power plug is firmly in it's socket on the annunciator module.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Replace System Power Supply unit if all the above steps fail to resolve the problem.</td>
</tr>
<tr>
<td></td>
<td>Defective Ribbon cable.</td>
<td>1. Replace the ribbon cable.</td>
</tr>
<tr>
<td>3. Power light on the annunciator module is ON but LED's on other modules are not on.</td>
<td>DC power cable is not connected to the annunciator module.</td>
<td>1. Ensure that the DC power cable is firmly in it's socket on the annunciator module.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Ensure that the module(s) on the Frame/Module assembly are all connected to the ribbon cable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Replace the annunciator module.</td>
</tr>
<tr>
<td>SYMPTOM</td>
<td>CAUSE</td>
<td>CORRECTIVE ACTION</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| 4. No audible alarm and LED's are not illuminating. | DC power cable is disconnected or loose. | 1. Ensure that the DC power cable from the system power supply is connected to the annunciator module snugly.
2. Depress "TEST" button. If the LED’s come on and there is no audible, replace the annunciator module. If this does not work, try solutions to problem #2. |
| 5. Audible signal will not silence. | Faulty display module. | 1. Disconnect the ribbon cable from the back of the faulty display module(s) and replace the module(s).
Connection of the DC power cable from system power supply to annunciator module is loose.
1. Disconnect the DC power cable from the annunciator module and then reconnect. If audible alarm still persists, replace the System Power Supply unit. |
| 6. Alarm condition exists but LED's are not illuminating. | Display module not properly calibrated. | 1. Ensure that the system was properly ordered
Factory default settings:
Mid Pressure:
 Hi Pressure 60 Psi
 Low Pressure 40 Psi
Vacuum:
 Low Vacuum 12 inHg
High Pressure:
 Hi: Nitrogen & Air 195 Psi
 Low: Nitrogen & Air 140 Psi
2. If calibration is required, refer to setting HIGH and LOW calibration procedure on page 18/19. |
| | Faulty display module. | 1. Replace the display module. |
Troubleshooting Guide

SYMPTOM

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Gas reading incorrect.</td>
<td>Loose connection of DISS fittings.</td>
<td>Ensure that the sensor module is properly connected to the DISS demand check-valve.</td>
</tr>
<tr>
<td></td>
<td>Sensor module is not properly wired to the display module.</td>
<td>Ensure that the sensor module is properly wired to the display module by using wiring diagram in Appendix D or E.</td>
</tr>
<tr>
<td></td>
<td>Defective sensor or requires calibration.</td>
<td>Replace the sensor module.</td>
</tr>
<tr>
<td></td>
<td>The ribbon cable not properly connected to the display module.</td>
<td>Pull out the ribbon cable and connect it back in again, while ensuring that it is seated properly.</td>
</tr>
<tr>
<td></td>
<td>Defective display module.</td>
<td>Replace the display module.</td>
</tr>
</tbody>
</table>

Error Code Messages on the Display Module

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>CAUSE</th>
<th>CORRECTIVE ACTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>E01</td>
<td>No sensor is connected.</td>
<td>Connect a sensor.</td>
<td>41 / 42</td>
</tr>
<tr>
<td>E02</td>
<td>Sensor and Display Module mismatched.</td>
<td>Ensure that the Sensor and Display Module are for the same gas.</td>
<td>19</td>
</tr>
<tr>
<td>E03</td>
<td>The High set-point was set below the Low set-point or vice versa.</td>
<td>Recalibrate the High and Low setpoint to proper values.</td>
<td>15/16</td>
</tr>
<tr>
<td>E04</td>
<td>Incorrect type of Sensor connected, (i.e. 250 Psi sensor on a 100 Psi range).</td>
<td>Connect the correct Sensor to the matching Display Module.</td>
<td></td>
</tr>
<tr>
<td>E06</td>
<td>Cable between the sensor and display module shorted out or reversed polarity.</td>
<td>Reverse polarity or replace cable if defective.</td>
<td>41 / 42</td>
</tr>
<tr>
<td>E07</td>
<td>Out of Calibration / Sensor not reading gas</td>
<td>Replace the sensor module</td>
<td>41 / 42</td>
</tr>
</tbody>
</table>
AREA ALARM

Example: 4 Gases, English ISO, Remote/Local pressure sensors, Oxygen, MedVac, Medical Air and Nitrous Oxide = A2AR-E-OVA2

NOTE: Please specify the gang back box on each alarm.

MASTER ALARM

Example: 2 Modules, English (20 Functions) = A2M-E-20

NOTE: Please specify the gang back box on each alarm.
NOTE: Please specify the gang back box on each alarm.

Example: English NFPA - Oxygen, Medical Air, MedVac, Nitrous Oxide, Nitrogen, Carbon Dioxide = A2ADR-U-OAV2NC

NEMA 4 ALARM

A2MN-L-XX

The Letter "L" Represents the Language:
E = English (CSA/NFPA)
F = French (CSA)
S = Spanish (NFPA)

The Letters "XX" Defines the Number of Functions:
10 = 10 Functions
20 = 20 Functions

A2ADR-U-XXXXXXXXXXXXX

The Letter "X" Defines the Type of Gas:
Oxygen = O
Medical Air = A
MedVac = V
Nitrous Oxide = 2
Nitrogen = N
Carbon Dioxide = C
WAGD = W
AGSS = E
Instrument Air = I

The Letter "U" Represents the Language:
U = English (NFPA)
E = English (CSA)
F = French (CSA)
S = Spanish (NFPA)

"X" indicates the order of gases, as shown above.
COMPACT MASTER COMBINATION ALARM

Use the Model number for the Area Alarm and add "M" for each Master module.
Example: 3 Gases, English ISO, Remote/Local Sensors, Oxygen, Vacuum, Medical Air and 2 Master Modules = A2ADR-E-OVAMM.

NOTE: Please specify the gang back box on each alarm.
Model Numbers

2 in 1 AREA ALARM

Example: 4 Gases, English CSA, Remote/Local pressure sensors,
Oxygen, Medical Air, MedVac, Nitrous Oxide = A2AR-E-1111
(O,A,V,2)

NOTE: Please specify the gang back box on each alarm.

R = Remote/Local Sensors
C = Conversion Series

A2AR-L-1111

The Number of the Digit “1” Defines the Number of Gases:
1 = 1 Gas
11 = 2 Gases
111 = 3 Gases
111111 = 6 Gases

The Letter “X” Defines the Type of Gas:
Oxygen = O
Medical Air = A
MedVac = V
Nitrous Oxide = 2
Nitrogen = N
Carbon Dioxide = C
WAGD = W
AGSS = E
Instrument Air = I

The Letter “L” Represents the Language:
U = English (NFPA)
E = English (CSA)
F = French (CSA)
S = Spanish (NFPA)
<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2-MAN-ALM-ENG</td>
<td>Alert-2 alarm manual English</td>
</tr>
<tr>
<td>A2P-ANNU-CB</td>
<td>Annunciator circuit board assembly</td>
</tr>
<tr>
<td>A2P-ANNU-EB</td>
<td>Annunciator module English Alert-2</td>
</tr>
<tr>
<td>A2P-POWER-V2</td>
<td>Power supply module Alert-2</td>
</tr>
<tr>
<td>A2P-AREA-E-N2O</td>
<td>Area alarm module ISO-N2O Eng. Alert-2</td>
</tr>
<tr>
<td>A2P-AREA-U-AIR</td>
<td>Area alarm module USA - AIR Alert-2</td>
</tr>
<tr>
<td>A2P-AREA-U-ARG</td>
<td>Area alarm module USA-ARGON Eng. Alert-2</td>
</tr>
<tr>
<td>A2P-AREA-U-DAI</td>
<td>Area alarm module DENTAL-AIR Eng. Alert-2</td>
</tr>
<tr>
<td>A2P-AREA-U-HELB</td>
<td>Area alarm module USA-HELIUM Alert-2</td>
</tr>
<tr>
<td>A2P-AREA-U-HEO</td>
<td>Area alarm module USA-HELOX Alert-2</td>
</tr>
<tr>
<td>A2P-AREA-U-HPA</td>
<td>Area alarm module HP-AIR Eng. Alert-2</td>
</tr>
<tr>
<td>A2P-AREA-U-LAI</td>
<td>Area alarm module LAB-AIR Eng. Alert-2</td>
</tr>
<tr>
<td>A2P-AREA-U-OXY</td>
<td>Area alarm module USA - OXY Alert-2</td>
</tr>
<tr>
<td>A2P-AREA-U-VAC</td>
<td>Area alarm module USA - VAC Alert-2</td>
</tr>
<tr>
<td>A2P-AREA-U-WAG</td>
<td>Area alarm module USA - WAG Eng. Alert-2</td>
</tr>
<tr>
<td>A2P-AREA-CB-AIR</td>
<td>Area circuit board assembly - AIR</td>
</tr>
<tr>
<td>A2P-AREA-CB-CO2</td>
<td>Area circuit board assembly - CO2</td>
</tr>
<tr>
<td>A2P-AREA-CB-EVA</td>
<td>Area circuit board assembly - EVA</td>
</tr>
<tr>
<td>A2P-AREA-CB-N2O</td>
<td>Area circuit board assembly - N2O</td>
</tr>
<tr>
<td>A2P-AREA-CB-NIT</td>
<td>Area circuit board assembly - NIT</td>
</tr>
<tr>
<td>A2P-AREA-CB-OXY</td>
<td>Area circuit board assembly - OXY</td>
</tr>
<tr>
<td>A2P-AREA-CB-VAC</td>
<td>Area circuit board assembly - VAC</td>
</tr>
<tr>
<td>MODEL NUMBER</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>A2P-SENS-U-HEO</td>
<td>Sensor module USA-HELIOMUX Alert-2</td>
</tr>
<tr>
<td>A2P-SENS-U-LAI</td>
<td>Sensor module USA LAB AIR Eng. Alert-2</td>
</tr>
<tr>
<td>A2P-SENS-U-OXY</td>
<td>Sensor module USA-OXY Eng. Alert-2</td>
</tr>
<tr>
<td>A2P-SENS-U-WAG</td>
<td>Sensor module USA-WAG Eng. Alert-2</td>
</tr>
<tr>
<td>A2P-MAST-E-AME</td>
<td>Master alarm module - English 10 points</td>
</tr>
<tr>
<td>A2P-MAST-E-ISO</td>
<td>Master alarm module - ISO English 10 points</td>
</tr>
<tr>
<td>A2P-MAST-CB</td>
<td>Master circuit board Assembly Alert-2</td>
</tr>
<tr>
<td>A2P-BLANK</td>
<td>Alert-2 alarm module blank (filler)</td>
</tr>
<tr>
<td>A2P-BOXASS-2</td>
<td>Alarm back box Assembly 2-station Alert-2</td>
</tr>
<tr>
<td>A2P-BOXASS-3</td>
<td>Alarm back box Assembly 3-station Alert-2</td>
</tr>
<tr>
<td>A2P-BOXASS-4</td>
<td>Alarm back box Assembly 4-station Alert-2</td>
</tr>
<tr>
<td>A2P-BOXASS-5</td>
<td>Alarm back box Assembly 5-station Alert-2</td>
</tr>
<tr>
<td>A2P-BOXASS-7</td>
<td>Alarm back box Assembly 7-station Alert-2</td>
</tr>
<tr>
<td>A2P-COMP-10</td>
<td>Computer interface Module English 10-pts.</td>
</tr>
<tr>
<td>A2P-FRMASS-2B</td>
<td>Alarm frame assembly 2-station Alert-2</td>
</tr>
<tr>
<td>A2P-FRMASS-3B</td>
<td>Alarm frame assembly 3-station Alert-2</td>
</tr>
<tr>
<td>A2P-FRMASS-4B</td>
<td>Alarm frame assembly 4-station Alert-2</td>
</tr>
<tr>
<td>A2P-FRMASS-5B</td>
<td>Alarm frame assembly 5-station Alert-2</td>
</tr>
<tr>
<td>A2P-FRMASS-7B</td>
<td>Alarm frame assembly 7-station Alert-2</td>
</tr>
<tr>
<td>A2P-PIPE</td>
<td>Pressure module pipe assembly (Alert-2)</td>
</tr>
<tr>
<td>A2P-RIBON-3</td>
<td>Ribbon cable assembly 3-station Alarm</td>
</tr>
<tr>
<td>A2P-RIBON-4</td>
<td>Ribbon cable assembly 4-station Alarm</td>
</tr>
<tr>
<td>A2P-RIBON-7</td>
<td>Ribbon cable assembly 7-station Alarm</td>
</tr>
<tr>
<td>A2P-RIBON-8</td>
<td>Ribbon cable assembly 8-station for 7 gas alarm</td>
</tr>
<tr>
<td>A2P-RIB-COMP-03</td>
<td>RIBBON CABLE ASSY 1 STN COMPACT ALARM</td>
</tr>
<tr>
<td>A2P-RIB-COMP-05</td>
<td>RIBBON CABLE ASSY 2 STN COMPACT ALARM</td>
</tr>
<tr>
<td>A2P-RIB-COMP-07</td>
<td>RIBBON CABLE ASSY 3 STN COMPACT ALARM</td>
</tr>
<tr>
<td>A2P-RIB-COMP-09</td>
<td>RIBBON CABLE ASSY 4 STN COMPACT ALARM</td>
</tr>
<tr>
<td>A2P-RIB-COMP-13</td>
<td>RIBBON CABLE ASSY 6 STN COMPACT ALARM</td>
</tr>
<tr>
<td>A2P-RIB-COMP-15</td>
<td>RIBBON CABLE ASSY 7 STN COMPACT ALARM</td>
</tr>
<tr>
<td>A2P-COMB-E-AGS</td>
<td>Combo Board Alarm Module ISO - AGSS</td>
</tr>
<tr>
<td>A2P-COMB-E-AIR</td>
<td>Combo Board Alarm Module ISO - AIR</td>
</tr>
<tr>
<td>A2P-COMB-E-CO2</td>
<td>Combo Board Alarm Module ISO - CO2</td>
</tr>
<tr>
<td>A2P-COMB-E-EVA</td>
<td>Combo Board Alarm Module ISO - EVA</td>
</tr>
<tr>
<td>A2P-COMB-E-N2O</td>
<td>Combo Board Alarm Module ISO - N2O</td>
</tr>
<tr>
<td>MODEL NUMBER</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>A2P-COMB-E-NIT</td>
<td>Combo Board Alarm Module ISO - NIT</td>
</tr>
<tr>
<td>A2P-COMB-E-OXY</td>
<td>Combo Board Alarm Module ISO - OXY</td>
</tr>
<tr>
<td>A2P-COMB-E-VAC</td>
<td>Combo Board Alarm Module ISO - VAC</td>
</tr>
<tr>
<td>A2P-COMB-U-AIR</td>
<td>Combo Board Alarm Module USA - AIR</td>
</tr>
<tr>
<td>A2P-COMB-U-OXY</td>
<td>Combo Board Alarm Module USA - OXY</td>
</tr>
<tr>
<td>A2P-COMB-U-VAC</td>
<td>Combo Board Alarm Module USA - VAC</td>
</tr>
<tr>
<td>A2P-COMB-U-WAG</td>
<td>Combo Board Alarm Module USA - WAGD</td>
</tr>
<tr>
<td>A2P-COMBO-CB</td>
<td>Combo Circuit Board Assem. - ALL GASES</td>
</tr>
<tr>
<td>A2X-BOX-2-FILL</td>
<td>Alarm box Filler Frame 2 Station</td>
</tr>
<tr>
<td>A2X-BOX-3-FILL</td>
<td>Alarm Box Filler Frame 3 Station</td>
</tr>
<tr>
<td>A2X-BOX-4-FILL</td>
<td>Alarm Box Filler Frame 4 Station</td>
</tr>
<tr>
<td>A2X-BOX-5-FILL</td>
<td>Alarm Box Filler Frame 5 Station</td>
</tr>
<tr>
<td>A2X-BOX-7-FILL</td>
<td>Alarm Box Filler Frame 7 Station</td>
</tr>
<tr>
<td>A2X-PLATE-RETR3</td>
<td>Retro-fit Plate Filler for 3 Function</td>
</tr>
<tr>
<td>A2X-PLATE-RETR4</td>
<td>Retro-fit Plate Filler for 4 Function</td>
</tr>
<tr>
<td>A2X-PLATE-RETR5</td>
<td>Retro-fit Plate Filler for 5 Function</td>
</tr>
<tr>
<td>A2X-PLATE-RETR7</td>
<td>Retro-fit Plate Filler for 7 Function</td>
</tr>
<tr>
<td>A2P-COMPACT-CB</td>
<td>Compact Area Circuit Board Assembly - All Gases</td>
</tr>
<tr>
<td>A2P-MYLCPB-E-AGS</td>
<td>Compact Board Mylar Bottom (ISO) - AGS</td>
</tr>
<tr>
<td>A2P-MYLCPB-E-AIR</td>
<td>Compact Board Mylar Bottom (ISO) - AIR</td>
</tr>
<tr>
<td>A2P-MYLCPB-E-CO2</td>
<td>Compact Board Mylar Bottom (ISO) - CO2</td>
</tr>
<tr>
<td>A2P-MYLCPB-E-N2O</td>
<td>Compact Board Mylar Bottom (ISO) - N2O</td>
</tr>
<tr>
<td>A2P-MYLCPB-E-NIT</td>
<td>Compact Board Mylar Bottom (ISO) - NIT</td>
</tr>
<tr>
<td>A2P-MYLCPB-E-OXY</td>
<td>Compact Board Mylar Bottom (ISO) - OXY</td>
</tr>
<tr>
<td>A2P-MYLCPB-E-VAC</td>
<td>Compact Board Mylar Bottom (ISO) - VAC</td>
</tr>
<tr>
<td>A2P-MYLCPB-E-IAIR</td>
<td>Compact Board Mylar Bottom (ISO) - IAIR</td>
</tr>
<tr>
<td>A2P-MYLCPB-U-AIR</td>
<td>Compact Board Mylar Bottom (NFPA) - AIR</td>
</tr>
<tr>
<td>A2P-MYLCPB-U-OXY</td>
<td>Compact Board Mylar Bottom (NFPA) - OXY</td>
</tr>
<tr>
<td>A2P-MYLCPB-U-VAC</td>
<td>Compact Board Mylar Bottom (NFPA) - VAC</td>
</tr>
<tr>
<td>A2P-MYLCPB-U-WAG</td>
<td>Compact Board Mylar Bottom (NFPA) - WAG</td>
</tr>
<tr>
<td>A2P-MYLCPT-U-IAIR</td>
<td>Compact Board Mylar Bottom (NFPA) - IAIR</td>
</tr>
<tr>
<td>A2P-MYLCP-E-AGS</td>
<td>Compact Board Mylar Top (ISO) - AGS</td>
</tr>
<tr>
<td>A2P-MYLCP-E-AIR</td>
<td>Compact Board Mylar Top (ISO) - AIR</td>
</tr>
<tr>
<td>A2P-MYLCP-E-CO2</td>
<td>Compact Board Mylar Top (ISO) - CO2</td>
</tr>
<tr>
<td>A2P-MYLCP-E-N2O</td>
<td>Compact Board Mylar Top (ISO) - N2O</td>
</tr>
<tr>
<td>A2P-MYLCP-E-NIT</td>
<td>Compact Board Mylar Top (ISO) - NIT</td>
</tr>
<tr>
<td>A2P-MYLCP-E-OXY</td>
<td>Compact Board Mylar Top (ISO) - OXY</td>
</tr>
<tr>
<td>A2P-MYLCP-E-VAC</td>
<td>Compact Board Mylar Top (ISO) - VAC</td>
</tr>
<tr>
<td>A2P-MYLCP-E-IAIR</td>
<td>Compact Board Mylar Top (ISO) - IAIR</td>
</tr>
<tr>
<td>A2P-MYLCP-U-AIR</td>
<td>Compact Board Mylar Top (NFPA) - AIR</td>
</tr>
<tr>
<td>A2P-MYLCP-U-OXY</td>
<td>Compact Board Mylar Top (NFPA) - OXY</td>
</tr>
<tr>
<td>A2P-MYLCP-U-VAC</td>
<td>Compact Board Mylar Top (NFPA) - VAC</td>
</tr>
<tr>
<td>A2P-MYLCP-U-WAG</td>
<td>Compact Board Mylar Top (NFPA) - WAG</td>
</tr>
<tr>
<td>A2P-MYLCP-U-IAIR</td>
<td>Compact Board Mylar Top (NFPA) - IAIR</td>
</tr>
<tr>
<td>A2P-MYLCP-BLNK</td>
<td>Compact Board Mylar - Blank</td>
</tr>
<tr>
<td>A2P-MYLCP-COVER</td>
<td>Compact Board Mylar - Cover</td>
</tr>
</tbody>
</table>
Number of Display Modules | A | B | Gang
--- | --- | --- | ---
1 module | 7 (178) | 8 (203) | 2
From 1 to 2 modules | 11 (272) | 12 (305) | 3
From 1 to 3 modules | 14 (356) | 15 (381) | 4
From 1 to 4 modules | 17 (439) | 18 (465) | 5
From 1 to 6 modules | 24 (610) | 25 (635) | 7

NOTE: DISS demand check valves by 1/4" NPT, supplied with each remote sensor.

Local/Remote Sensor

1/2"-14 NPSM [13]
(see Thread Specs.)
Dimensions

MASTER ALARM

<table>
<thead>
<tr>
<th>Number of Display Modules</th>
<th>A</th>
<th>B</th>
<th>Gang</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 module</td>
<td>7 (178)</td>
<td>8 (203)</td>
<td>2</td>
</tr>
<tr>
<td>From 1 to 2 modules</td>
<td>11 (272)</td>
<td>12 (305)</td>
<td>3</td>
</tr>
<tr>
<td>From 1 to 3 modules</td>
<td>14 (356)</td>
<td>15 (381)</td>
<td>4</td>
</tr>
<tr>
<td>From 1 to 4 modules</td>
<td>17 (439)</td>
<td>18 (465)</td>
<td>5</td>
</tr>
<tr>
<td>From 1 to 6 modules</td>
<td>24 (619)</td>
<td>25 (635)</td>
<td>7</td>
</tr>
</tbody>
</table>

Inch [mm]

[Diagram showing dimensions A and B with mounting bracket labeled]
COMPACT ALARM

Dimensions

<table>
<thead>
<tr>
<th>Number of Display Modules</th>
<th>A</th>
<th>B</th>
<th>Gang</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 module</td>
<td>7</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>From 1 to 2 modules</td>
<td>11</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>From 1 to 3 modules</td>
<td>14</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>From 1 to 4 modules</td>
<td>17</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>From 1 to 6 modules</td>
<td>24</td>
<td>25</td>
<td>7</td>
</tr>
</tbody>
</table>

Note: DISS Demand check valves by 1/4" NPT, supplied with each remote sensor.

Used for Local Sensor Application
1/4" [6.4] (I.D.) Type "K" Copper Pipe

Brazing Filler
Metal AWS Spec.
BAq-7

1/2 - 14NPSMTHD.
Brass 1 [25] HEX

#22 Gauge twisted pair
shielded cable 6"-8"
[0.1m - 0.2 m] supplied

1/2"-14 NPSM [13]
(see Thread Specs.)

Local/Remote Sensor
COMPACT MASTER COMBINATION ALARM

Dimensions

<table>
<thead>
<tr>
<th>Number of Display Modules</th>
<th>A</th>
<th>B</th>
<th>Gang</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 module</td>
<td>7 (18)</td>
<td>8 (20)</td>
<td>2</td>
</tr>
<tr>
<td>from 1 to 2 modules</td>
<td>11 (27)</td>
<td>12 (30)</td>
<td>3</td>
</tr>
<tr>
<td>from 1 to 3 modules</td>
<td>14 (36)</td>
<td>15 (38)</td>
<td>4</td>
</tr>
<tr>
<td>from 1 to 4 modules</td>
<td>17 (43)</td>
<td>18 (46)</td>
<td>5</td>
</tr>
<tr>
<td>from 1 to 6 modules</td>
<td>24 (61)</td>
<td>25 (63)</td>
<td>7</td>
</tr>
</tbody>
</table>

DISS CONNECTOR

Brazing Filler
Metal AWS Spec. BAg-7
1/2-14NPSM THD.
Brass 1 [25] HEX

Mounting Bracket

Wrench Flats 1 [25]

DISS Demand check valves by 1/4” NPT, supplied with each remote sensor.

1/2" Conduit Connection

#22 Gauge twisted pair shielded cable 6’-8’ [0.1m - 0.2 m] supplied

1/2"-14 NPSM [13]
(see Thread Specs.)
2 in 1 ALARM

Only supplied with Local Sensors 1/4" (6.4mm) (I.D.) Type "K" Copper Pipe

Number of Display Modules	A	B	Gang
1 module | 7 | 8 | 2 |
From 1 to 2 modules | 11 | 12 | 3 |
From 1 to 3 modules | 14 | 15 | 4 |
From 1 to 4 modules | 17 | 18 | 5 |
From 1 to 6 modules | 24 | 25 | 7 |

Note: DISS Demand check valves by 1/4" NPT, supplied with each remote sensor.
Appendix A

Wiring Diagram Auto-Switching Power Supply

AC Supply 115 to 220 VAC

L - Live
N - Neutral
G - Ground

Fuse (1 Amp)

Toggle Switch

Ground

DC Power Cable: Connect to Annunciator Module
NOTE:

Relays on the annunciator are fail safe for version 3.1 or newer.

Relays are not fail safe for version 3.0 or older.
NOTE:

Relays on the annunciator are fail safe for version 3.1 or newer.

Relays are not fail safe for version 3.0 or older.
Wiring Diagram

Area Display Module - Local Sensor

Sensor Module

22 Gauge twisted pair shielded cable 6”-8” [0.1m-0.2m] supplied

Area Display Module

Dry contacts for remote monitoring of High and Low alarms
Appendix E

Wiring Diagram Area Display Module - Remote Sensor

NOTE:
For multiple sensors, a multi-conductor twisted pair, shielded cable should be used.
Wiring Diagram 2 in 1 Display Module

Sensor Module

22 Gauge twisted pair shielded cable 6"-8" [0.1m-0.2m] supplied

Dry contacts for remote monitoring of High and Low alarms

Source Equipment

Note: Jumper any unused points

Dry contacts only, no voltage

2 in 1 Module

OXYGEN

NO NC COM NO NC COM - +

Jumper any unused points

Dry contacts for remote monitoring of High and Low alarms

Appendix F

Wiring Diagram 2 in 1 Display Module
Appendix G

Wiring Diagram Compact Module

NOTE:

Version 3: Jumper any unused points on the Master module

Version 4: Jumper any unused points on the Master module. Turn OFF dip-switches for any unused points (Location SW-2)
Appendix H

Wiring Diagram Area Module to Master Module

NOTE:

Version 3: Jumper any unused points on the Master module.

Version 4: Jumper any unused points on the Master module. Turn OFF dip-switches for any unused points (Location SW-2)
Appendix I

Wiring Diagram 2 in 1 Module to Master Module

NOTE:

Version 3: Jumper any unused points on the Master module

Version 4: Jumper any unused points on the Master module.
Turn OFF dip-switches for any unused points (Location SW-2)
Appendix J

Wiring Diagram Abnormal Condition

NOTE:
Version 3: Jumper any unused points on the Master module.
Version 4: Jumper any unused points on the Master module. Turn OFF dip-switches for any unused points (Location SW-2)
Appendix K

Wiring Diagram Area Slave

Alarm #1

Alarm #2

Note: Set the gas specific dip switch on each area slave panel

NOTE: “The slave alarm does not work with A2P-POWER-CONV, both Alarm must be attached the A2P-POWER-V2”
NOTE:

Version 3: Jumper any unused points on the Master module.

Version 4: Jumper any unused points on the Master module. Turn OFF dip-switches for any unused points (Location SW-2).
Wiring Diagram Pressure Switch Connection to a Master Alarm

NOTE: There are 2 NIT switches, one for high alarm and one for low alarm.
Wiring Diagram Computer Interface Module

Dry contacts for interface with: Building Management System. Contacts are Common and NC, open on Alarm.

Ratings: 24VDC 0.1A

NOTE:

Version 3: Jumper any unused points on the Master module

Version 4: Jumper any unused points on the Master module. Turn OFF dip-switches for any unused points (Location SW-2)
Wiring Diagram Master to Slave Module

"Master 1"

"Master 2"

Source Equipment (typical)

C NC

NOTE:

Version 3: Jumper any unused points on the Master module

Version 4: Jumper any unused points on the Master module. Turn OFF dip-switches for any unused points (Location SW-2)

Note: Turn OFF dip-switches for any unused points (Location SW-2)
Appendix P

Technical Specification

Supply Voltage: 115 to 220 VAC - 50 to 60 Hz

Current Draw: 1 Amp.Max.

Fuse (1/4 * 1-1/4): Fast Blow 1 Amp.

Cable requirement:

Area Display Module to Remote Sensor:

Distance: Maximum 2,500 feet [750 m]

Cable: Belden # 8451 or equivalent.

#22 gauge shielded, twisted pair. (For multiple sensors a multi-conductor twisted pair, shielded cable should be used).

Signal: 30 VDC - 1.0 Amps.

60 VDC - 0.3 Amps.

125 VAC - 0.5 Amps.

Master Module to Source equipment:

Distance: Maximum 10,000 feet [3,000 m]

Cable: Minimum #22 gauge wire (does not have to be shielded, twisted pair).

Signal: 5 VDC, < 5 µA.

Computer Interface Board:

Output: Dry Contacts NC, open on Alarm.

Rating: 30 VDC - 1.0 Amps.

60 VDC - 0.3 Amps.

125 VAC - 0.5 Amps.